

Performance Evaluation Modelling
with JMT:

learning by examples
G. Serazzi Ed.

Technical Report n. 2008.09

- 2 -

To my students,
for their patience ...

To myself,
before the night falls

Every theory, every project
require experimental validation

- 3 -

Contents

Preface

1. Software Applications

1.1. Enhancing Process performance through Dynamic Web Service selection 7
1.2. Performance Evaluation of Web Services: bottleneck identification 37
1.3. A Queueing Network Model of a Parallel Application 51

2. Capacity Planning of Enterprise Systems

2.1. Capacity Planning of an Hospital Intranet with Multiclass Workload 64
2.2. Intranet with Web Servers and RAID-0 Storage .74
2.3. A Network with Finite Capacity Region and Drop Rule 101

3. Computer System Architectures
3.1. Performance Evaluation of Computer Memory Hierarchy 108
3.2. Shared-Memory Multiprocessor Systems: Hierarchical Task Queue 135

4. Multimedia
4.1. Modelling a Surveillance System . 150
4.2. Performance Evaluation Report on VoIP Gateway Systems 161

5. Security
5.1. Encryption Management in Wireless Personal Area Networks 206
5.2. Modeling the Performance of SCADA Field Devices 232

6. Networks
6.1. Capacity Planning of a Wireless Lan . 244
6.2. Queueing Network Model of Ad-Hoc Wireless Networks 268
6.3. Peer to Peer File Sharing . 283

7. Protocols
7.1. Modelling of BitTorrent Peer-to-Peer protocol . 290
7.2. Performance Evaluation of Tairona VoIP Server 310

8. Various Topics
8.1. Modeling a Road Junction for Vehicular Traffic Control 348

This material is intended only for a free distribution.

- 4 -

Preface

The goal of this eBook is to improve the performance modeling skills of students and researchers who need
to build accurate, i.e., representative, models of computer systems, networks and applications.
With the rapid growth of computer networking and the increasing demand for complex services there is a
strong interest in developing models to evaluate, forecast, and optimize the performance of the digital
infrastructures that are implemented.
The construction of a reliable model requires understanding the real world phenomenon, problem, system to
be studied. The most important characteristics should be identified, and those not affecting the
representativeness of the model should be discarded. Then the model can be designed and parameterized.
The process of conducting a modelling study requires to work at three levels: the real world, the abstraction
level, and the modeling space.

The abstraction process brings the real world into the modeling space. It relies upon the experience and
creativity of a person rather than her/his technological background. It neither can be learned with an
academic approach nor absorbed passively; it instead builds up on day-by-day trial and error work and
experience.
The statements above summarize the rationale behind this eBook. It was felt that readers will benefit from a
collection of application oriented projects showing how the abstraction process is conducted in different
cases. The basic idea is that of sharing with the readers the experience accumulated by students.

This eBook collects some of the performance evaluation studies carried out by the Master and Ph.D.
students of “Computer Systems Performance Evaluation” courses I taught at the Politecnico di Milano, Italy
and at the Advanced Learning and Research Institute (ALaRI) of the University of Lugano, Switzerland. The
JMT tools (an open source suite that can be downloaded from http://jmt.sourceforge.net) were used to
construct and solve the models.
The projects are in the form presented by their authors, acknowledged in the front pages, after several
interactions. There might be errors (not only from a technical point of view, most of the authors are not
English native speakers) and some projects might not even have received a positive evaluation. However,
we believe that readers could benefit from their analysis by concentrating on the abstraction process and on
the model design rather than on the actual quantitative results presented in the projects.

I hope you will find this material of some help and apologize in advance for the mistakes you will find. Neither
the authors nor myself can be considered responsible for errors that you may introduce in your work due to
the content of this eBook. Errors, opinions, conclusions and other information in the projects collected in this
eBook shall be understood to be neither given nor endorsed by myself.

Giuseppe Serazzi

Milano, Italy

 June 17, 2008

REAL WORLD
environment

ABSTRACTION
level

MODEL space

- 5 -

1 – Software Applications

1.1 - Enhancing Process Performance through Dynamic Web Service selection 7
1.2 - Performance Evaluation of Web Services: bottleneck identification 37
1.3 - A Queueing Network Model of a Parallel Application 51

- 6 -

Enhancing Process Performance Through
Dynamic Web Service Selection:

A Queueing Network Based Approach

Course of Performance Evaluation
December, 12, 2006

Alessandro Bozzon1, Florian Daniel2, Federico M. Facca1, and Enrico Mussi1

1 Politecnico di Milano
Dipartimento di Elettronica ed Informazione

Via Ponzio 34/5 20133 Milano, Italy
[bozzon,facca,mussi]@elet.polimi.it

2 Università di Trento
Via Sommarive 14, 38100 Povo (TN), Italy

daniel@disi.unitn.it

Abstract. The dynamic selection of Web services and their integration
into composite applications or services is a prominent research challenge.
Most of the times, however, the adoption of dynamic selection mech-
anisms is mainly justified by the increase of robustness of the overall
system and its higher availability. In this paper, we instead investigate
another important aspect of the dynamic selection of Web services, i.e.
its impact on the performance of the resulting system.

Starting from a real-world, process-centric application scenario, we de-
velop a set of possible system architectures that meet the scenario re-
quirements and analyze them by means of proper queue models and
simulation techniques. Final goal of the study is to investigate utilization
and throughput properties of the different architectures and to identify
and eliminate possible bottlenecks by applying dynamic service selection
techniques. As the results of this work show, queue modeling techniques
provide a powerful means to study the performance of composite appli-
cations.

1 Introduction

In service-oriented computing (SOC), developers use services as basic compo-
nents in their application development processes. In particular, the way in which
services are used and the definition of which role an actor may assume during
its interaction with a service is specified by the Service Oriented Architecture
(SOA), a reference architecture that describes how Service Oriented Comput-
ing can be used. The traditional SOA defines three actors: the Service Provider
that provides services, the Service Requestor that searches and uses services,

- 7 -

and the Service Broker that provides means to publish and retrieve services [11].
Extensions to the traditional SOA have also been studied [12] in order to in-
troduce advanced management aspects that the traditional SOA does not take
into account. Among these problems, the extended SOA offers some interesting
hints about dynamic service composition, which is one of the most important
capabilities that a service-based application environment must have in order to
automate as much as possible the creation and the maintenance of solutions that
combine basic services by ordering them to best suit their requirements.

One of the open problems still under investigation by researchers is the au-
tomatic selection, aggregation and invocation of services according to real-time
changes in the environment that surrounds the applications themselves. In this
adaptive scenario, different actors could raise events that may cause the trig-
gering of dynamic mutations in the system (e.g. users changing their functional
requirements, availability of new services with better quality and so on...) and,
as a response, the system would have to change its internal state accordingly.

Among such events, one of the most tedious problems to cope with is rep-
resented by the temporary unavailability of one or more services, or, more in
general, by the unacceptable growth of the response time due to the overload
of the service provider. Such problem is not of fast practical solution since it
depends on facing dynamic changes that can be recognized only at runtime. For
this reason, proper formal methods to simulate dynamic behaviors of service
networks are needed.

In this work we use queueing networks as a model to analyze the aforemen-
tioned problem by representing each tier of a generic service-based application
as a queue. This approach has been inspired by the work described in [5] that,
besides representing a good approximation for the dynamic service selection,
also provides: i) capacity provisioning, which enables system architectures to de-
termine how much capacity to allocate to a service in order to support its peak
workload, ii) performance prediction, which allows the determination of the re-
sponse time of a service for a given workload and a given hardware and software
configuration, iii) bottleneck identification and tuning, which allow the identifi-
cation of system bottlenecks for tuning purposes, and iv) request policing, which
enables the application to turn away excess requests during transient overloads.

This paper reports our experiences in modeling both static, partially dynamic
and completely dynamic Web service publication and consumption by means of
queueing networks. The chosen model allows to represent service-oriented ap-
plications based on an arbitrary number of layers, each one having significantly
different performance characteristic. As proof of concept we used a reference
scenario inspired by a European project, the WS-Diamond project 3. Evalua-
tions, consideration and conclusions are performed in an incremental fashion by
means of simulations ran with the Java Modeling Tool (JMT) 4, an open-source
simulation software developed by Politecnico di Milano.

3 http://wsdiamond.di.unito.it
4 http://jmt.sourceforge.net/

- 8 -

This paper is organized as follow: in Section 2 we detail the motivation and
the objectives of the work while defining the reference scenario used throughout
the paper. In Section 3 we present a brief description of the chosen formal basis
and of the simulation tools, while Section 4 reports the results of our model
evaluation. Finally, in Section 5 we draw our conclusion.

2 Motivation and Reference Scenario

As already outlined in Section 1, the objective of this work is to show how the
dynamic selection of Web services can be used to improve the efficiency of a Web
service-based application in order to increase its performances. This section first
introduces the motivations behind our works and then describes the scenario we
decided to use as a proof of concept for our application of queueing networks
models to the problem of dynamic Web service substitution.

2.1 Motivation and Objectives

Usually, Web services are used in a static configuration. The application devel-
oper first selects the set of atomic Web services to use for building the application
and then, using languages such as WS-BPEL [2], realizes the main application
as an orchestration [13] of atomic Web services.

In WS-BPEL, the application is realized as a business process in which oper-
ations provided by atomic Web services are combined to create the application
logic desired by the developer. Once created, the business process is deployed
inside a BPEL engine (e.g., ActiveBPEL [1]) and it is offered to users as an
atomic Web service, where the complexity of its implementation is hidden.

The main shortcoming of this approach derives from the fact that, due to
both language and engine limitations, Web services used inside the BPEL process
cannot be dynamically substituted [9]. The substitution is achievable only by
modifying the process to insert the set of atomic Web services first and then
redeploying the process again.

Even if for some applications this solution is acceptable (i.e., the cost of
redeploy a process is negligible), this may not be true for sophisticated applica-
tions where there is the necessity to dynamically select and invoke Web services
according to particular conditions that can be evaluated only at runtime.

Analyzing the influence that the dynamic selection of Web services has over
applications, it is possible to see that it ensures two types of improvements.
First of all, the dynamic selection can be used to increase the satisfiability of
users. Each user has its own needs and preferences that cannot be captured by
statically defined processes. On the contrary, the dynamic and runtime selection
of Web services helps selecting the set of atomic Web services that best fulfill
user requirements increasing the user satisfiability. Several work has been done
in this area and interested readers are referred to [3, 10].

The second type of improvements that the introduction of the dynamic Web
service selection may bring concerns the increase of performances. For example,

- 9 -

through the use of the Web service substitution it is possible to increase the
scalability (i.e., new Web services can be used without modifying the original
structure of the process), the reliability (i.e., faulty Web services can be substi-
tuted at runtime), and the throughput (i.e., Web services are selected at runtime
according to their capacity of increasing the system throughput of the main
application) of an application.

This paper is mainly focused on performance improvements. In particular,
starting from a reference scenario described in the next section, we show how to
use the dynamic Web service selection to enhance an existing application that
needs to be improved in order to support the growth of its users.

2.2 Reference Scenario

The reference scenario is concerned with a FoodShop Company [17] that sells and
delivers food using the Web service technology. The scenario is taken from the
WS-Diamond Project 5, a project of the Sixth Framework Programme Priority2 -
Information Society Technologies that aims at developing a framework for self-
healing Web Services.

The company has an online Shop that customers use to select and order food.
The Shop does not have a physical counterpart but instead stores and delivers
food using either a Warehouse or a Supplier. The Warehouse is responsible
for stocking unperishable goods and physically delivering items to customers,
depending on the area each customer lives in. In case of perishable items, that
cannot be stocked, or in case of out-of-stock items, the FoodShop Company must
interact with the Supplier.

Besides Customers, which interact with the FoodShop Company in order to
place their orders, pay the bills and receive their goods, also Employees use the
FoodShop software infrastructure to remotely manage the Shop application and
access both Warehouse and Supplier services.
The Shop, the Warehouse, and the Supplier are Web services. They are described
by means of WSDL [7, 15] interfaces and electronic interactions among them are
carried out exchanging SOAP [16] messages. Both Customers and Employees
communicate with the Shop service using the SOAP protocol. Fig. 1 shows how
the main actors collaborate:

– Ci represents the generic client of the Shop. A client can be either a Customer
or an Employee. As it is possible to see from the picture, the maximum
number of clients is unbounded;

– SHOP represents the online Shop that provides the operations that both
customers and employees use to interact with the system;

– WSi represents a generic warehouse that may be used during an interaction
between the Shop and one of its clients;

– SUPi represents a generic warehouse that may be used during an interaction
between the Shop and one of its clients.

5 http://wsdiamond.di.unito.it/

- 10 -

Fig. 1. FoodShop example actors

Fig. 1 also shows how actors are distributed inside the network. The Shop and
Warehouses reside inside the same local networks, while Clients (i.e., customers
or employees) access the Shop service remotely from the Internet. Suppliers are
also accessed by the Shop through the Internet.

2.3 Reference Process Models

In order to better detail the reference scenario, this section briefly describes the
workflow of some of the actors. In particular, we take into account the Customer,
the Shop, the Warehouse, and the Supplier [17]. For sake of brevity and clar-
ity we decided to avoid describing the Employee workflow and the operations
that the Shop provides for Employees because, apart from specific operations,
their informative content is negligible with respect to the performance analysis
reported in Section 4.

The Customer
The Customer workflow (see Fig. 2) is abstract and we represent only its interface
with the other services, while we do not represent internal activities. The reason
is that the customer is an external entity with respect to the company, thus we
cannot assume to have its detailed workflow.

The Customer places an order (sendOrder) communicating the items he/she
is interested in (items) and its personal data (custInfo). Then it waits for an
answer from the Shop: if some of the items are not available the conversation
ends (exit). Otherwise the user receives the bill and decides whether to pay
(replyPay) sending its payment to the Shop. If the Customer decides not to

- 11 -

Fig. 2. Customer workflow

pay the conversation ends (exit). Otherwise, he/she waits for the parcel sent by
one of the companys Warehouse. Notice that the parcel shipment is a physical
transaction, while the others are all electronic transactions.

The Shop
The Shop workflow (see Fig. 3) is detailed, and contains several internal activ-
ities. When the Shop receives an order (receiveOrder) with the ordered items
and the Customer data (custInfo), it selects the Warehouse (selectWH) and splits
(splitOrder) the ordered items into the set of perishable items (ns items) and
that of unperishable items (s items). It then checks the availability of perishable
items (checkAvail&reserve) with the Supplier, asking to temporarily reserve
them in case they are available. The Shop receives back the set of reserved
items (ns resitems), the corresponding reservation codes (ns answers), and the
answers on availability (ns answers).

The list of unperishable items is instead sent to the Warehouse (checkAvail),
that sends back a collective answer (s answers) on availability. If any of the items
is unavailable, the order is canceled.

The Shop communicates this to the Customer, and cancels the reservations
(unreserved) both with the Supplier and the Warehouse.

If on the other hand all the items are available, the Shop asks the Warehouse
to compute the ship cost (shipCost), which depends on the distance between the
Warehouse itself and the user address, as well as the total weight of the ordered

- 12 -

Fig. 3. Shop workflow

items (for this reason, the Shop sends to the Warehouse both the list of items
and custInfo).

Then the Shop computes the totalCost and sends the bill to the Customer,
which sends back a payment. If the Customer decides not to pay, the Shop can-
cels all the reservations (unreserved) with the Supplier and the Warehouse. If
the payment is ok, the Shop forwards the order to the Warehouse (fwOrder),
which from now on is responsible for it, and tells the Supplier to send the re-
served items to the Warehouse (requestSupply), providing the reservation codes
(ns rescodes) and the warehouse address (whInfo).

The Warehouse
The Warehouse (see Fig. 4 first receives a request from the Shop to check the
availability of some items (s items) and reserve them (reserveAvail). If some

- 13 -

items are out-of-stock, the Warehouse contacts the Supplier in order to check
for availability and to reserve them (findSuppliers), receiving back the set of
reserved items (s resitems), the corresponding reservation codes (s rescodes) and
the answers on availability (s answers).

The Warehouse elaborates a collective answer on availability and sends it to
the Shop (collectAnswers). Then it waits for one of the following things to
happen: either the Shop decides to cancel the order, or to proceed.

In the first case the Warehouse has to cancel its own reservations, and, in
case some Supplier were contacted, it must also cancel the reservations with the
Suppliers (unreserved).

In the second case, the Warehouse is asked by the Shop to compute the
shipment cost. Then the Shop tells the Warehouse to proceed with the order. In
case of out-of-stock items, the Warehouse asks the Suppliers to send the reserved
items (requestSupply), by providing the reservation codes (s rescodes) and its
address (whInfo).

At this point the Warehouse must assemble the package. In order to do this,
it must wait both for the (unperishable) items it reserved directly from the
Suppliers, and for the (perishable) items that were reserved by the Shop.

Once the parcel is ready, the Warehouse asks a shipper (requestShipping)
to send it to the user.

The Supplier
Like the Customer workflow, the Supplier workflow (see Fig. 5) is abstract since
each supplier may have a different internal workflow. Of course, it is the same
workflow independently from the Web Service that contacts the Supplier. For
this reason, the Web Service that buys the goods is generically called Buyer,
while the receiver of the products is generically called Receiver. It is clear that
in our context the Buyer can be either the Shop or the Warehouse, while the
Receiver is always the Warehouse.

The Supplier is first asked by the user to verify the availability of some items
and reserve them (verify&reserve). The Supplier sends back the set of reserved
items (resitems), the corresponding reservation codes (rescodes) and the answers
on availability. Then the Buyer can either cancel the reservation (unReserve) or
ask the Supplier to send the items (supply) to the address (sendAddress) of the
Receiver.

2.4 Towards the Dynamic Selection of Web Services

At the beginning, the FoodShop application has been developed defining static
links in such a way the the Shop was able to use only one Warehouse and only
one Supplier. This means that the first version of the FoodShop application could
use only one Warehouse and only one Supplier at a time.

With the growth of Customers, the FoodShop Company needs to increase
the number of Employees in order to be able to efficiently manage all the new
business transactions. Unfortunately, increasing the Employees is not enough,

- 14 -

Fig. 4. Warehouse workflow

since the FoodShop Company quickly realizes that the software infrastructure
is inadequate to support the new traffic that flows among orchestrated Web
services. Moreover, the solution of using just one Warehouse and one Supplier
appears as inadequate because they are not able to satisfy the new requests that
comes both from new Customers and new Employees. The FoodShop Company
decides to introduce the dynamic selection of Web services as a way to solve its
infrastructural problems. In that way, the number of Warehouses and Suppliers
the the Shop service may use is unbounded and the overall system may benefit
of the increased computational capacity.

Section 4 enters into the details and analyzes, using queue modeling tech-
niques described in Section 3, the performance advantages the introduction of
dynamic Web service selection may provide.

3 Modeling and simulation instruments

Queueing networks with multiple class models provide estimates for performance
measures such as utilization, throughput, and response time. With multiple class
models, outputs are given in terms of the individual customer classes and, for

- 15 -

Fig. 5. Supplier workflow

systems in which the jobs being modeled have significantly different behaviors,
results are more accurate [8].

3.1 Queueing networks with multiple class modeling

Let C be the number of classes in the model. Each class c is an open class with
arrival rate λc. We denote the vector of- arrival rates by λ̄ ≡ (λ1, λ2, ..., λ3). We
list below the formulae used to calculate performance measures of interest:

– processing capacity : a system is said to have sufficient capacity to process
a given offered load λ̄ if it is capable of doing so when subjected to the
workload over a long period of time. For multiple class models, sufficient
capacity exists if the following inequality is satisfied:

max
k
{

C∑
c=1

λcDc,k} < 1 (1)

– throughput : by the forced flow law the throughput of class c at center k as a
function of λ̄ is:

Xc,k(λ̄) = λcVc,k (2)

– utilization: from the utilization law:

Uc,k(λ̄) = Xc,k(λ̄)Sc,k = λcDc,k (3)

- 16 -

– residence time: residence time is given by:

Rc,k(λ̄) =
Dc,k

1−∑C
j=1 Uj,k(λ̄)

(queueing centers) (4)

– queue length: applying Littles law to the residence time equation above, the
queue length of class c at center k, Qc, k(λ̄),is:

Qc,k(λ̄) = λc ·Rc,k(λ̄) =

{
Uc,k(λ̄), (delay centers)

Uc,k(λ̄)

1−PC
j=1 Uj,k(λ̄)

, (queueing centers)
(5)

– system response time: the response time for a class c customer, Rc(λ), is the
sum of its residence times at all devices:

Rc(λ̄) =
K∑

k=1

Rc,k(λ̄) (6)

– average number in system: the average number of class c customers in system
can be calculated using Littles law, or by summing the class c queue lengths
at all centers :

Qc(λ̄) = λcRc(λ̄) =
K∑

k=1

Qc,k(λ̄) (7)

3.2 The Java Modelling Tool (JMT)

The Java Modelling Tools (JMT) is an open source suite for performance evalua-
tion, capacity planning, and modeling of computer and communication systems.
The suite provides the implementation of numerous algorithms specifically de-
sign to perform exact, asymptotic and simulative analysis of queueing network
models, either with or without product-form solution.

As its authors indicate [4], JMT has been developed with two main objec-
tives: i) to support performance evaluation scientists and practitioners in the
analysis of complex systems, and ii) as a didactic tool to help students to un-
derstand the basic principles of performance evaluation and modeling. Figure 6
shows a screenshot of the JMT’s main window. JMT includes six different tools
supporting different analysis frequently used in capacity planning studies:

– JSIMwiz: a discrete-event simulator for the analysis of queueing network
models. The simulation engine supports several probability distributions
for characterizing service and inter-arrival times. JSIMwiz supports state-
independent routing strategies as well as state-dependent strategies, and
evaluates performance indices like throughput, utilizations, response times,
residence times and queue-lengths. Whatif analysis, where a sequence of
simulations is run for different values of parameters, are also possible;

- 17 -

Fig. 6. Screenshot of the Java Modeling Tool (JMT).

– JSIMgraph: a graphical user-friendly interface for the simulator engine
used by JSIMwiz. It integrates the same functionalities of JSIMwiz with an
intuitive graphical workspace;

– JMVA: meant for the exact analysis of single or multiclass product-form
queueing network models, either processing open, closed or mixed workloads.
The computed performance indices are the same of JSIM. What-if analyses
are allowed;

– JABA: a tool for the identification of bottlenecks in closed product-form
networks using efficient convex hull algorithms algorithms.

– JWAT: supports the workload characterization phase, with emphasis on
Web log data;

– JMCH is a didactic tool that applies a simulation technique to solve a
simple model and show the underlying Markov Chain;

For sake of brevity we reported only a brief description of each of tool. Interested
readers can find more details inside the official JMT website 6.

4 System Queue Modeling and Evaluation

Starting from the application scenario presented in Section 2, in this section
we discuss the scalability properties of some possible system architectures that
could be adopted to support the execution of the described processes. For this
6 http://jmt.sourceforge.net/

- 18 -

purpose, we will adopt queue models to capture relevant system requirements
and to simulate increasing workloads.

We will begin with the case of a static architecture, where warehouse and
supplier are statically fixed at design time and cannot be changed anymore after
the deployment of the system. Next we will show how the dynamic selection
of the warehouse service, out of a set of three different, equivalent services,
allows us to slightly improve the performance of the static system. Then, a third
system architecture with dynamic selection of both warehouse and supplier will
finally allow us to address all possible bottlenecks in the system and to derive
an architecture with excellent scalability capabilities, thus also able to provide
support for a large and growing number of process executions.

4.1 Workload Classes

In order to able to evaluate the performance of the three systems, we need
to characterize the expected workloads of the system. As our final goal is to
optimize the execution of the shop application, that is the performance of the
processes composing the shop application, we will apply two different classes of
workload to the systems under investigation, one for each main actor causing
the execution of a process:

– Customers may connect to the shop service and start the shopping process
graphically summarized in Figure 3;

– Personnel members may initiate management and maintenance processes
(for the sake of simplicity, in this paper we do not discuss the details of the
respective process).

Note that the two workload classes, customers and personnel, represent the
execution of a whole process, not just one interaction of a customer or an em-
ployee. Both classes are characterized by different service times and visit num-
bers at the components building up the system; such parameters will be provided
when discussing the proposed architectures singularly.

Table 1, shows the initial arrival rates for the two workload classes, which,
instead, are the same for all the systems under investigation. Starting from these
values, our scalability study will consider arrival rates that are up to ten times
higher than these initial values, so as to guarantee a reasonable growth potential
of the final architecture.

Table 1. Initial arrival rates of the two workload classes [job/sec].

Customers Personnel

Arrival rate 0.6 0.2

- 19 -

4.2 Static Selection

In this section we describe a first system architecture, i.e. the static architecture,
that will also serve as reference architecture for the discussion of the two proposed
dynamic solutions.

Queue Model
Figure 7 shows the queue models that shows the interconnection of shop, ware-
house and supplier. Since the object under investigation (the shop) is again a
Web service exposed on the Internet, we model the system as open system, which
is expressed by the source node, which generates incoming requests, and by the
sink node, which gathers completed jobs.

Fig. 7. The static system architecture modeled as queue network.

Table 2 and Table 3 show the service times and the number of visits at the
different stations in the queue network for the two workload classes. In general,
customer processes have a higher service demand than personnel processes.

Table 2. Service times [msec].

Workload classes

Station Customers Personnel

Shop 4 3

Warehouse 80 50

Supplier 100 -

Table 3. Number of visits.

Workload classes

Station Customers Personnel

Shop 1 1

Warehouse 5 2

Supplier 2 0

Evaluation
The evaluation of the scalability properties of the previous queue model is

- 20 -

achieved be means of a so-called “What-if” analysis, which allows us for ex-
ample to track utilization and throughput values for arrival rates that range
from 100% to 1000% of the values listed in Table 1 (in 10 incremental steps).

Utilization Figure 8 shows the dynamics of the utilization of the three stations
in the static system architecture in accordance to the increasing workload. The
shop (Figure 8(a)) and the supplier (Figure 8(c)) do not present any problem of
saturation, while the warehouse (Figure 8(b)) clearly saturates after a 4 times
increase of the two workloads, thus limiting the scalability of the overall system.

(a) Shop utilization. (b) Warehouse utilization.

(c) Supplier utilization.

Fig. 8. Utilizations in the static queue network.

System Throughput As can be seen in Figure 9, the slow-down of the system is
mainly due to the customers workload class. In fact, while the throughput of the
personnel workload class almost linearly scales with the increasing arrival rates
(cf. Figure 9(b)), the throughput diagram corresponding to the customer class
(Figure 9(a)) shows a clear interruption of the linear growth in correspondence
to the saturation of the warehouse, which occurs at arrival rates around 4 times
higher than the initial values. The breakdown of the throughput can be seen in
both diagrams, but it is slightly more accentuated for customers because they
have a higher service demand to the warehouse than the personnel.

- 21 -

(a) Customer throughput. (b) Personnel throughput.

Fig. 9. System throughputs in the static queue network.

4.3 Dynamic Warehouse Selection

To overcome the bottleneck identified in the static system architecture, we pro-
pose the introduction of a dynamic Web service selection mechanism, so as to
be able to distribute the workload dynamically over a set of warehouses. Each
warehouse is represented by its own Web service that can be integrated into our
system architecture as described in the following.

Queue Model
Figure 10 represents the system architecture for the execution of our business
processes, enriched with a set of three different warehouses and one load bal-
ancer representing the dynamic service selection logic7. The rest of Figure 10 is
analogous to Figure7.

The dynamic load balancer is in charge of deciding to which warehouse an
incoming job should be forwarded. This decision may be based on a variety of
different policies, e.g. random, round robin, probabilities, shortest queue length,
shortest response time, least utilization or fastest service8. As our main goal is
to enhance the performance of the process executions, in this first step we adopt
the shortest response time policy for our simulations.

Table 4 shows the new table of service times with respect to the new queue
model. In particular, we now have three different warehouses with different per-
formance characteristics also depending on the particular workload class. We do
not explicitly take into account the service time of the load balancer.

Evaluation
Analogously to the previous simulation, we perform a “What-if” analysis on

7 For the sake of simplicity, in this paper we consider only three different warehouses,
but the following considerations also hold in the more general case where we could
have an arbitrary large set of warehouses to choose among.

8 This set of load balancing policies is already supported by the JMT instrument, but
other algorithms could be required and implemented as well.

- 22 -

Fig. 10. System with dynamic warehouse selection as queue network.

Table 4. Service times [msec].

Workload classes

Station Customers Personnel

Shop 4 3

Warehouse1 80 50

Warehouse2 60 40

Warehouse3 100 65

Supplier 100 -

- 23 -

the system with dynamic warehouse selection, varying the arrival rate of both
customers and personnel from 100% to 1000% of their initial values.

(a) Shop utilization. (b) Warehouse1 utilization.

(c) Warehouse2 utilization. (d) Warehouse3 utilization.

(e) Supplier utilization.

Fig. 11. Utilizations in the queue network with dynamic warehouse selection.

Utilization The utilization diagrams corresponding to the different stations in
the queue model and resulting from the performed analysis are depicted in Figure
11.

The utilization of the shop (Figure 11(a)) has not changed from the one that
could be observed in the static version of the system architecture (see Figure
8(a)). Based on the observed utilization we can even state that the current shop
infrastructure can easily cope with the expected growth of workload.

- 24 -

Figures 11(b) to 11(d) show the dynamics of the utilization for the three
warehouses that operate in parallel. Due to our decision to adopt the shortest
response time load balancing policy, the three warehouses present different dy-
namics of their utilization. More precisely, the captured dynamics derives from
the different service times we have associated to the three warehouses (cf. Ta-
ble 4). In response to the growing workload, the load balancer first chooses the
fastest warehouse (i.e. warehouse 2), then second fastest one (warehouse 1), and
only with very high workloads the load balancer also forwards requests to the
slowest warehouse (warehouse 3). As can be seen in the diagrams, none of the
warehouses saturates, and the more the workload grows, the more the load bal-
ancer parallelizes the jobs sent to the warehouses.

However, Figure 11(e) now clearly shows that, once the bottleneck at the
warehouse has been resolved through the dynamic service selection, now we
have a saturation at the supplier service at arrival rates greater than 4 times the
initial values. This behavior can be explained in the following way: if in the static
system the bottleneck was represented by the warehouse, now this bottleneck
has been resolved, and more jobs per time unit reach the supplier service, which
is however not capable of coping with this higher values.

(a) Customer throughput. (b) Personnel throughput.

Fig. 12. System throughputs in the queue network with dynamic warehouse selection.

System Throughput Again, the saturation at the supplier service impacts the
overall system throughput, as can easily be seen in Figure12. While in the static
architecture the throughput of the personnel was less (but still) affected by the
saturation of the warehouse, in this case the personnel is not affected at all by
the breakdown of the throughput at the supplier service. In fact, differently from
the customer workload class, the personnel workload class makes not visits to the
supplier. Therefore, a possible congestion of the supplier service does not impact
on the performance of the personnel workflows in execution. To the contrary, we
can even say that the more customers are waiting in the queue of the supplier,
the more personnel requests can be served at the warehouse.

- 25 -

4.4 Dynamic Warehouse and Supplier Selection

In order to resolve the bottleneck at the supplier service, once again we introduce
a dynamic service selection logic and use three different suppliers, instead of just
one.

Queue Model

Fig. 13. System with dynamic selection of warehouse and supplier as queue network.

The three supplier services and the dynamic selection logic are introduced
into the queue model in the same was as we introduced the dynamic selection
of the warehouses. Also to select the appropriate supplier service, we adopt the
shortes response time load balancing policy. Figure 13 shows the resulting queue
model drawn with JSIMgraph, while Table 5 reports the new service times for
the three supplier services.

Evaluation
To check the quality of the new system with dynamic selection of both warehouse
and supplier, we perform again a “What-if” analysis to track the system behavior
in response to the growing arrival rates of customer and personnel requests.

- 26 -

(a) Shop utilization. (b) Warehouse1 utilization.

(c) Warehouse2 utilization. (d) Warehouse3 utilization.

(e) Supplier1 utilization. (f) Supplier2 utilization.

(g) Supplier3 utilization.

Fig. 14. Utilizations in the queue network with dynamic warehouse and supplier se-
lection.

- 27 -

Table 5. Service times [msec].

Workload classes

Station Customers Personnel

Shop 4 3

Warehouse1 50 30

Warehouse2 40 20

Warehouse3 60 40

Supplier1 100 -

Supplier2 120 -

Supplier3 90 -

Utilization As expected, also in this new version of the system architecture,
the utilization of the shop does not present any saturation problems (cf. Figure
14(a)) and instead scales linearly with the growing workload.

Figures 14(b) to 14(d) and Figures 14(e) to 14(g), respectively, show the
utilization of the three warehouses and the three suppliers. Due to the different
service times of the Web services and to the adopted load balancing policy, the
diagrams again show highly varying behaviors, but none of the Web services
saturates.

The two bottlenecks (first the warehouse, then the supplier) have thus been
eliminated by introducing suitable dynamic Web service selection mechanisms
into the execution of the workflows running in the shop application. The so
achieved dynamic system architecture is thus able to cope with the expected
workload growth, providing a highly scalable solution for the parallel execution
of the business processes described in our reference scenario.

(a) Customer throughput. (b) Personnel throughput.

Fig. 15. System throughputs in the queue network with dynamic warehouse and sup-
plier selection.

Throughput The good scalability of the system with dynamic warehouse and
supplier selection is further documented by Figure 15, which reports the system

- 28 -

throughput for both customer and personnel processes. In fact, now both curves
grow almost linearly with the growing workload.

4.5 Advanced Dynamic Warehouse Selection

In the previous experiments with the dynamic selection of Web services we
adopted the shortest response time strategy for the load balancing activities.
If we look at the warehouse or supplier utilizations of the last experiment (cf.
Fig. 14(b)- 12(b)), it can easily be seen that this strategy does not always present
an optimal behavior. For example, the variance over time of the utilizations of
the warehouses or suppliers is large, that is, their utilization grows or decreases
rapidly from one time instant to another. Generally speaking, the loads at the
warehouses and at the suppliers are not well balanced. A better load balancing
policy/strategy is required. In this section, we thus investigate a more sophisti-
cated load balancing algorithm with the aim of optimizing the load distribution
over the different warehouses and suppliers.

To improve the performance of the system it is possible to derive a rout-
ing strategy that is based on optimum loading, according to the available Web
Services. However, optimal loading algorithms for multiclass queuing networks
are quite complex [14]. Yet, Fig. 11(b) clearly shows that the dominant work-
load class in the considered problem is the customer class, while the personnel
throughput scales up quite linearly (cf. Fig. 11(c)). Based on this observation
and for presentation purposes, we decided to simplify the problem and consider
the optimization of the workload only with respect to the customer class by
switching off the personnel class in the tool simulations. Fig. 16 shows the sys-
tem behavior when only the customer class is enabled in the dynamic warehouse
and supplier selection configuration (cf. Section 4.4). The simulation has been
performed using the same arrival growth rate of Section 4.4, i.e. we started from
0.6 job/sec and increased the arrival rate up to 6 job/sec.

In the following, we propose the load balancing algorithm introduced by Chen
[6] to study the optimum loading for multilevel storage systems. The optimum
loadings are defined as the loadings, one for each resource, that maximize the
throughput, and hence minimize the mean response time of the subsystem for a
given global load.

In our case we want to compute the load on each Warehouse Web Service
that minimize the response time R of the whole warehouse selection subsystem.
We denote λ as the arrival rate of requests to the whole subsystem, and λi as the
mean arrival rate of the ith Web Service. Si is the mean service time of the ith
Web Service. In the open model proposed we assume that the interarrival times
of the λ requests to the Warehouse sub system are exponentially distributed,
hence also the interrarival times of requests to the individual Warehouses are
exponentially distributed. This allows us to consider each Warehouse as a single
independent M/M/1 model with a first come-first served scheduling algorithm.
According to these assumptions the mean number Ni of requests in the ith

- 29 -

(a) Warehouse1 utilization. (b) Warehouse2 utilization.

(c) Warehouse3 utilization. (d) Dynamic Warehouse Selector
throughput.

(e) Customer throughput. (f) System Response Time.

Fig. 16. System behaviour in the queue network with dynamic warehouse and supplier
when only the Customer class is enabled (cf. Section 4.4).

- 30 -

Warehouse is:
Ni =

Ui

1− Ui

where Ui = λi ·Si is the utilization of ith Warehouse. Thanks to Little’s formula
(Ni = λi ·Ri), we know that for the ith Warehouse the response time is:

Ri =
1

1/Si − λi

According to the assumptions, R, the response time of the whole system, is
the weighted sum of Ri:

R =
n∑

i=1

λi

λ
Ri =

n∑

i=1

λi

λ(1/Si − λi)

This last formula clearly shows how the response time R of the whole subsys-
tem is related with the load of the single Warehouse, and that to minimize R, we
need to compute optimal λi according to the total λ load. Chen propose an algo-
rithm to solve such problem. The algorithm is valid under the assumption that
the devices are ordered by increasing service times (so that S1 ≤ S2 ≤ . . . ≤ Sn).

Step 1. Compute the quantities L(k) given by:

L(k) =
k∑

j=1

1
Sj
−

√
1
Sk

k∑

j=1

√
1
Sj

(k = 1, . . . , n)

L(n + 1) =
n∑

j=1

1
Sj
−

√
1
Sk

k∑

j=1

√
1
Sj

Step 2. Compute the value of k̄ such that:

L(k̄ + 1) > λ ≥ L(k̄)

Step 3. Compute the optimal values λ∗i that are given by:

λ∗i =
1
Si
−

√
1
Si

∑k̄
p=1

1
Sp
− λ

∑k̄
p=1

√
1

Sp

(i = 1, . . . , k̄)

λ∗i = 0 (i = k̄ + 1, . . . , n)

Customer optimum loadings
First of all we order the Warehouses according to their increasing service time:
Warehouse2, Warehouse1, Warehouse3. Then, by applying the step 1 we obtain:

Lc(1) = 0
Lc(2) = 2.23
Lc(3) = 5.08
Lc(4) = 39.17

- 31 -

According to these results, we can say that: when the number of requests
incoming in the Warehouse subsystem are less of 2.23 requests/s the optimal
solution is to load only the Warehouse2; when then number of requests incoming
is included between 2.23 and 5.08 requests/s the optimal solution is to share
the load between Warehouse2 and Warehouse1; when then number of requests
incoming is included between 5.08 and 39.17 requests/s the optimal solution
is to share the load between all the Warehouses. Finally when the number of
incoming requests reach 39.17 requests/s all the components are saturated (i.e.,
Ui = 1 for i = 1, 2, 3).

Taking into account step 2 and step 3 we can describe the optimal values λ∗i
in function of the total load λ of the considered class:

λ∗1 =

λ, if λ ≤ 2.23
1.04 + 0.54 · λ, if 2.23 < λ ≤ 5.08
1.83 + 0.38 · λ, if 5.08 < λ ≤ 39.17

λ∗2 =

0, if λ ≤ 2.23
−1.03 + 0.46 · λ, if 2.23 < λ ≤ 5.08
−0.38 + 0.33 · λ, if 5.08 < λ ≤ 39.17

λ∗3 =

0, if λ ≤ 2.23
0, if 2.23 < λ ≤ 5.08
−1.47 + 0.29 · λ, if 5.08 < λ ≤ 39.17

The above equations are graphically presented in Fig. 17(a), while Fig. 17(b)
shows the optimal utilization of Warehouses according to the arrivals to the
Warehouse subsystem.

To apply the obtained results, we need to know the actual values of the
total arrivals to the Warehouse subsystem. To solve the problem we can simply
consider the throughput of the Dynamic Warehouse Selector as calculated by
the tool (cf. Fig. 16(c)). The Figure shows that the maximum arrival rate to
the Warehouse subsystem is 23.367 job/sec when the Customer arrival rate is 6
job/sec. Hence we are still far from saturating the whole warehouse subsystem
(39.17 requests/s).

Finally, to compare the whole systems performance with the previous ones,
we compute a new simulation in ten steps, corresponding to the growth steps of
the Customer arrival rate in the previous experiments. The values used for the
experiments are reported in Table 6. Fig. 18 shows the experiment results: while
the system throughput gets slightly worse (cf. Fig. 18(a)), the system response
time improves definitively (cf. Fig. 18(b)).

5 Conclusions

In this paper we have proposed a queueing networks-based approach to the eval-
uation of the performance of systems that integrate Web Services and leverage

- 32 -

0 1 2 3 4 5 6

1

2

3

4

Warehouse subsystem arrivals (job/sec)

Op
tim

al
Wa

reh
ou

se
 lo

ad
 (jo

b/s
ec

)
Warehouse2

Warehouse3

Warehouse1

(a) The optimal values λ∗i in function of the global load λ of the
Customer class in the Warehouse subsystem.

0 1 2 3 4 5 6
Warehouse subsystem arrivals (job/sec)

Op
tim

al
Wa

reh
ou

se
s u

tiliz
ati

on
 (%

)

0.6

0.4

0.2

0.3

0.5

0.1

Warehouse2

Warehouse3

Warehouse1

(b) The optimal values U∗i in function of the global load λ of the
Customer class in the Warehouse subsystem.

Fig. 17. The optimal loads and utilization of Warehouses

- 33 -

0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.6 6.0
Customer arrival rate [job/s]

1

2

3

5

6

7

4

Optimzed

Original

Sy
ste

m
Th

rou
gh

pu
t [j

ob
/s]

(a) The comparison between the original system throughput and
the modified one.

0.1

1

10

100

1000

10000

0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.6 6.0
Customer arrival rate [job/s]

Sy
ste

m
Re

sp
on

se
 Ti

me
 [s

]

Optimzed

Original

(b) The comparison between the original system response time and
the modified one.

Fig. 18. Advanced selection experiment results

- 34 -

Table 6. Considered arrivals rates [jobs/sec] and associated Warehouses probabilities.

Arrivals Warehouses probabilities

Step Customers Warehouses Warehouse 1 Warehouse 2 Warehouse 3

1 0.6 3.143 0.13 0.87 -

2 1.2 6.419 0.27 0.66 0.07

3 1.8 8.732 0.29 0.59 0.12

4 2.4 12.024 0.30 0.53 0.17

5 3.0 14.632 0.30 0.50 0.20

6 3.6 17.666 0.31 0.48 0.21

7 4.2 20.193 0.31 0.47 0.22

8 4.8 21.446 0.31 0.46 0.23

9 5.4 21.490 0.31 0.46 0.23

10 6.0 23.367 0.31 0.46 0.23

dynamic service selection mechanisms. Based on a food shop scenario, we have
shown how the entire process executions can be interpreted as “jobs” in queueing
network terms and how this interpretation has allowed us to optimize the shop’s
system architecture so as to assure the scalability of the overall system.

In particular, the simulations performed with the JMT instrument on three
different possible system architectures has allowed us to demonstrate the effec-
tiveness of dynamic Web Service selection solutions to augment the scalability of
service-based systems. Furthermore, we have been able to demonstrate that the
dynamic service selection positively affects the overall throughput of the system
and, thus, also optimizes the system’s efficiency. The simulation results achieved
with the shortest response time load balancing strategy however have led to
sub-optimal utilizations of the dynamically selected services; hence, we have
also shown how an optimal load balancing algorithm could be implemented. We
also showed how the used optimal load balancing algorithm contributes to im-
prove the overall response time of the system, reducing the amount of system
time required to execute a process, and hence improves the users’ productivity.

References

1. ActiveBPEL. ActiveBPEL Engine. http://www.activebpel.org/.

2. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Busi-
ness Process Execution Language for Web Services Version 1.1, May 2003.
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf.

3. D. Ardagna, A. Avenali, L. Baresi, D. Berardi, D. Bianchini, C. Cappiello, M. Co-
muzzi, V. D. Antonellis, F. D. Rosa, D. Desideri, C. Francalanci, C. Leporelli,
G. Matteucci, A. Maurino, M. Mecella, M. Melchiori, S. Modafferi, E. Mussi,
B. Pernici, P. Plebani, and D. Presenza. Mobile Information Systems. Infrastruc-
ture and Design for Adaptivity and Flexibility, chapter E-Services, pages 47–80.
Springer, 2006.

- 35 -

4. M. Bertoli, G. Casale, and G. Serazzi. Java modelling tools: an open source suite
for queueing network modelling and workload analysis. In Proceedings of QEST
2006 Conference, pages 119–120, Riverside, US, Sep 2006. IEEE Press.

5. P. S. M. S. Bhuvan Urgaonkar, Giovanni Pacificiy and Asser Tantawiy. An analyti-
cal model for multitier internet services and its applications. ACM SIGMETRICS,
pages 291 – 302, 2005.

6. P. P. Chen. Optimal file allocation in multi-level storage systems. In AFIPS
Conference Proceedings, pages 277–282, Sanibel Island, FL, USA, June 1973.

7. E. Christensen, F. Curbera, G. M. Microsoft, and S. Weerawarana. Web
Services Description Language (WSDL) 1.1. W3C Note, March 2001.
http://www.w3.org/TR/wsdl.

8. G. G. K. S. E.D. Lazowska, J.Zahorjan. Quantitative System Performance, Prentice
Hall, 1984. Prentice Hall, 1984.

9. D. J. Mandell and S. A. McIlraith. Adapting BPEL4WS for the Semantic Web:
The Bottom-Up Approach to Web Service Interoperation. In 2nd International
Semantic Web Conference (ISWC ’03), pages 227–241, Sanibel Island, FL, USA,
October 2003.

10. A. Maurino, S. Modafferi, E. Mussi, and B. Pernici. A Framework for Provisioning
of Complex e-Services. In IEEE International Conference on Services Computing
(SCC 2004), pages 81–90, Shanghai, China, September 2004.

11. OASIS TC. Reference Model for Service Oriented Architecture
1.0. Committee Specification, August 2006. http://www.oasis-
open.org/committees/download.php/19679/soa-rm-cs.pdf.

12. M. P. Papazoglou and D. Georgakopoulos. Service Oriented Computing: Introduc-
tion. Communications of the ACM, 46(10):24–28, 2003.

13. C. Peltz. Web Services Orchestration and Choreography. IEEE Computer,
36(10):46–52, 2003.

14. J. Sethuraman and M. S. Squillante. Optimal stochastic scheduling in multiclass
parallel queues. In SIGMETRICS ’99: Proceedings of the 1999 ACM SIGMET-
RICS international conference on Measurement and modeling of computer systems,
pages 93–102, New York, NY, USA, 1999. ACM Press.

15. W3C Consortium. Web Services Description Language (WSDL) Version 2.0
Part 0: Primer. W3C Candidate Recommendation, W3C, January 2006.
http://www.w3.org/TR/wsdl20-primer/.

16. W3C Working Group. SOAP Version 1.2 Part 0: Primer. W3C Recommendation,
June 2003. http://www.w3.org/TR/soap12-part0/.

17. WS-Diamond Group. Requirements, application scenarios, overall architecture,
test/validation specification, common working environment and standards at Mile-
stone M1. Internal report, 2006.

- 36 -

POLITECNICO DI MILANO
Dipartimento di Elettronica e Informazione

PhD course

Advanced topics in computer system performance analysis

09/11/2007

Performance evaluation of Web Services

Authors
Luca Cavallaro
Matteo Miraz
Tutor
prof. Giuseppe Serazzi

- 37 -

1 Introduction

The Service-oriented Architecture (SOA) paradigm foresees the creation of busi-
ness applications from independently developed services. In this vision, providers
offer similar competing services corresponding to a functional description of a
service; these offerings can differ significantly in some Quality of Service (QoS)
attributes like performance [1]. On the other side, prospective users of ser-
vices dynamically choose the best offerings for their purposes. Using the SOA
paradigm to build applications, services can be dynamically selected and inte-
grated at runtime, so enabling system properties like flexibility, adaptiveness,
and reusability.
In this context, the key point is to build applications through the composition of
available services. The application can be specified as a process in Business Pro-
cess Execution Language (BPEL) language in which the composed Web Services
(WSs) are specified at an abstract level. The interfaces of individual services are
specified using Web Service Description Language (WSDL), the W3C standard
to model WSs interfaces, with documented quality properties. Specifically, the
agreed performance attributes and levels can be specified by means of appro-
priate notations that augment the service specifications [2].
Applications built on services face different challenges: on one hand they should
ensure that users experience the required performance, and on the other hand
they have to maximize the resource utilization, so that provider incomes are
maximize. Besides, due to the high dynamism of the applications, a deploy-
ment time quality prediction may lose significance during the application life
time. In fact the quality of the application depends on the selected services
that may be changed at run time.
In this paper we propose an approach to estimate a service oriented application
performance. Our approach starts from the description of a service oriented ap-
plication given using BPEL. This description is translated into a queue network
and it is used to run a deployment time analysis of the application perfor-
mance. This estimation can be used by application clients to monitor QoS.
Since performances may change during application run time, due to changes
in invoked services, the QoS needs to be monitored, in order to be kept up to
date. For this task our approach suggests to annotate the BPEL process with
performance indices and to monitor application QoS using WS-CoL (web ser-
vice costraint language) framework [3]. Using WS-CoL it is possible to become
aware of changes in application performance and to react to changes invoking
services offering a better QoS.
The rest of the paper is organized as follows: section 2 describes in detail ser-
vice oriented architectures, section 3 presents a case study to demonstrate our
approach, section 4 presents our approach to performance estimation for service
compositions, section 5 proposes the results of the approach on our case study,
section 6 presents some considerations about the approach and proposes some
future developments.

2

- 38 -

2 SOAs and Web Services

Service Oriented Architecture (SOA) is an evolution of distributed computing
and modular programming. SOAs build applications out of software services.
Services are relatively large, intrinsically unassociated units of functionality,
which have no calls to each other embedded in them. They typically implement
pieces of functionality most humans would recognize as a service, such as filling
out an on line application for an account, viewing an on line bank statement,
or placing an on line book or airline ticket order. Instead of services embedding
calls to each other in their source code, protocols are defined which describe
how one or more services can talk to each other. This architecture then relies
on a business process expert to link and sequence services, in a process known
as orchestration, to meet a new or existing business system requirement.
The goal of SOA is to allow fairly large chunks of functionality to be strung to-
gether to form ad-hoc applications which are built almost entirely from existing
software services. The larger the chunks, the fewer the interface points required
to implement any given set of functionality; however, very large chunks of func-
tionality may not be granular enough to be easily reused. Each interface brings
with it some amount of processing overhead, so there is a performance consider-
ation in choosing the granularity of services. The great promise of SOA is that
the marginal cost of creating the n-th application is zero, as all of the software
required already exists to satisfy the requirements of other applications. Only
orchestration is required to produce a new application.
A service oriented application usually has to meet the three following require-
ments:

• Interoperability between different systems and programming languages.
The most important basis for a simple integration between applications
on different platforms is a communication protocol, which is available for
most systems and programming languages.

• Clear and unambiguous description language. To use a service offered by a
provider, it is not only necessary to be able to access the provider system,
but the syntax of the service interface must also be clearly defined in a
platform-independent fashion.

• Retrieval of the service. To allow a convenient integration at design time
or even system run time, a search mechanism is required to retrieve suit-
able services. The services should be classified as computer-accessible,
hierarchical or taxonomies based on what the services in each category do
and how they can be invoked.

2.1 Web service

A service orienteds system is not tied to a specific technology. SOA can be
implemented using one or more of these protocols and, for example, might use

3

- 39 -

a file system mechanism to communicate data conforming to a defined inter-
face specification between processes conforming to the SOA concept. The key
is independent services with defined interfaces that can be called to perform
their tasks in a standard way, without the service having foreknowledge of the
calling application, and without the application having or needing knowledge
of how the service actually performs its tasks. For this reasons SOA have been
implemented using many technologies.
The most well known SOAs are web services. Web services are SOAs that
make functional building blocks accessible over standard Internet protocols that
are independent from platforms and programming languages, just like HTTP
or SMTP. Web services applications meet the three SOA requirements using
SOAP, WSDL and UDDI. SOAP (Simple Object Access Protocol) is a proto-
col similar to RPC that allows to call methods on remote objects residing on
different tiers of a network. WSDL (Web Service Description Language) is an
interface description language that allows a service to expose information about
its interface that may be used by a remote client to invoke a method on the
service. UDDI (Universal Description Discovery and Integration) is a registry
that allows a remote client to run queries to discover and use web services.

2.2 Service workflow and BPEL

One of the most interesting possibilities of SOA is the possibility for a service
to invoke other services using their interfaces. In this way fine-grained services
can be composed in more coarse-grained services. This mechanism makes possi-
ble incorporating services into business processes and workflows, specified using
high level languages.
The most spread workflow language is BPEL. This is an XML language, de-
veloped by Microsoft to describe web service compositions. Using BPEL it is
possible to define the workflow of a service oriented application. A BPEL work-
flow can be invoked by a client, just like a remote application, since it exposes to
the client information about parameters to provide. BPEL does not provide the
possibility to annotate performance indices into the workflow. For this reason
an extension of the language is needed. Since BPEL syntax allows annotations
the extension can be easily performed.

3 Case Study

A travel agency manager wants to move its company business on the web. He
wants to offer a travel booking service. Users accesses to the service through a
front end web application. After accessing the web application users can query
a map service to plan their travel, then they can book train, plane or taxi to
reach the selected destinations. Their tickets can be stored in a cart and, when
they are done with their booking, they can pay for their order using a payment
service.
The travel agency manager plans that all the customers, in order to access his

4

- 40 -

on line trip planner, must fill a registration form. Moreover he thinks that there
will be two user classes that will use the trip planner: a class that uses the
planner to plan trip from a start point to an arrival point, without intermediate
stops, and a class that will plan trips featuring intermediate stops.
This process is built using web services. Each step that an user can perform
is implemented by a service. Services are then composed in a BPEL workflow,
following the schema reported in figure 1. Users access the planner through the
front end. This service invokes a map service, called mappe, that returns the
starting and destination point of the trip. The map service is invoked once by
users planning punctual trips and at least twice by users planning trips with
intermediate stops. The data retrieved by the map service are returned to the
front end that uses them to book tickets on train, plane or tax rides, using three
services called respectively treno aereo taxi. Tickets data are returned to the
front end that uses them for concluding the order. Users booking a punctual
itinerary are sent directly to the payment service, called pagamento, by the front
end, when their ticket is chosen. Users booking an itinerary with intermediate
stops are supposed to store their tickets using a shopping cart service, called
carrello. Finally the reservation is returned to the users.
The travel agency manager chose some existing services to build his composition,
and he wants to know which quality of service he can offer to his customers.
Since he knows that service oriented applications can be dynamically changed
in a cost-effective way he also wants to know how many customers he can serve
without make them experiencing a low quality of service and, if any problem
arises during the application life time, which services he should change in order
to speed up the composition.

4 Our Approach

Our approach is articulated in four main steps:

• Build a service composition, choosing services to invoke

• Build a queue network to model the composition

• Assign performance indices to the invoked services

• Use the JMT suite to study system performances [4] [5].

The first step can be performed using BPEL to describe the composition.
BPEL is an XML syntax language that allows to specify which services have to
be invoked in a composition and how data have to be passed between invoca-
tions. The second step consists in modeling the composition as a queue network.
Each service in the composition can be modeled as a station with queue. It is
necessary to model the composition itself as a station with queue, since the
composition can be considered as a service. This station will be called frontend
and will have service time equals to the time the server hosting composition is
busy, excluding the time of other services invocation. If the number of users

5

- 41 -

Figure 1: BPEL process

6

- 42 -

that can use the system is fixed (i.e. users need registration in order to use the
composition) then it is necessary to model also users, using a station without
queue. The service time of this station will be the think time.
The third step can be performed in two different ways, depending on the goal
the performance study has:

• estimating the performances of a web service composition before deploying
it

• estimating a web service composition QoS when it is running and deciding
if it is necessary to replace a service in the composition.

If we want to estimate performances of a service composition at deploy time
the data can be evinced from services logs, if we use existing services, or can
be estimated by the system administrator, in case the services are built ad-
hoc. In this case performance analysis can be used to estimate system run time
performances with a prefixed load and to estimate when the system will become
overloaded, using a what-if analysis.
If we want to estimate the composition QoS we need an historical log of service
composition performance. This log can be obtained using a service monitor [6]
to log residence times and visits for each service.
These data can be used to obtain service demands for each invoked service in
the composition. Service demand lattice can be used to estimate bottlenecks in
the system and to decide if any invoked service needs to be substituted. The
approach is exemplified in section 5 using the case study of section 3.

5 Performance Evaluation

The approach we presented in section 4 was demonstrated on the case study
reported in section 3.
The travel agency server composition was translated into a queue nework. The
network was reported in figure 2. Each service in the composition is modeled
as a station with queue, with the same of the service it models. The queue net-
work presents, in addiction, two more stations. The station with queue called
frontend models the BPEL composition itself, as the composition is a service.
The station without queue called users models the registered users of the sys-
tem. Since the system is closed we can assume that the number of users is fixed.

We started our analysis assuming that there is a set of services whose ser-
vice time is known and we have already designed a BPEL workflow that uses
those services. In this case we should instrument our application in order to
retrieve the services’ time requests. Afterwards we should model the service
time requested by each service with an exponential process whose lambda is
compatible with the measured mean.
Since the goal of this study is to evaluate the validity of the overall approach,
we used our experience to propose a set of plausible values for the service time

7

- 43 -

Figure 2: Qn Model of the travel agency service composition

8

- 44 -

of each web-service. The table 1 reports the mean values we selected for the
various services.

“Puntuale” “Itinerario”
Frontend 0.0020 0.0066
Carrello 0.0050
Mappe 0.0025 0.0005
Treno 0.0050 0.0010
Aereo 0.0030 0.0008
Taxi 0.0030 0.0008

Pagamento 0.0010 0.0010

Table 1: Service request: mean values.

After selecting the service request, we had to analyze the work-flow and
calculate the likelihood of visiting a service. Considering the performance model
reported in figure 2, we had to decide the routing of the fronted service, and we
proposed to use the probabilities listed in table 2.

“Puntuale” “Itinerario”
Carrello 0.00 0.20
Mappe 0.37 0.24
Treno 0.09 0.08
Aereo 0.09 0.08
Taxi 0.07 0.12

Pagamento 0.12 0.04

Table 2: Routing probabilities.

In order to retrieve the D matrix of the system, we run the simulation using
JMT (Java Modeling Toolkit [5]) with only one user. In this mode the service
requests of the different web-services represent the D matrix of the system. Ta-
ble 3 reports the result of that simulation. Looking at the results it is possible to
oversee eventual bottlenecks, analyzing the D for each service. The service with
the highest D value (usually that value is referred with Dmax) has the greater
demand, thus will require more time than other services and will represent the
bottleneck of the system. Since the case study has two classes, we can have
two different bottleneck, one for each class. In this case we can notice that the
frontend service represent the bottleneck for both classes, requiring respectively
0.704 s for the “Puntuale” class and and 2.148 s for the “Itinerario” class.

In order to improve the system, we propose to enhance the server that host
the pagamento, doubling its speed. The time required for each visit on that
server now is distributed as an exponential process with a lambda factor of
0.0040 for the “Puntuale” class and 0.0110 for the “Itinerario” class. We re-run
the simulation with the new values, and we got the new values of the D matrix
of the system, that are reported in 4. Analyzing this table we can notice that
the pagamento is no longer the bottleneck of the system, so enhancing the server

9

- 45 -

“Puntuale” “Itinerario”
Frontend 0.704 2.148
Carrello 0.000 0.165
Mappe 0.610 1.951
Treno 0.079 0.252
Aereo 0.122 0.396
Taxi 0.074 0.593

Pagamento 0.510 0.161

Table 3: Initial service residence time.

that hosts it we are able to remove the original bottleneck.

“Puntuale” “Itinerario”
Frontend 0.350 1.027
Carrello 0.000 0.161
Mappe 0.599 1.741
Treno 0.075 0.261
Aereo 0.112 0.404
Taxi 0.074 0.605

Pagamento 0.496 0.167

Table 4: Simulated service residence with enhanced front-end service.

Continuing the analysis on the new system, we can detect a new bottleneck,
that is the mappe service. That service requires 0.599s for processing a user of
the “puntuale” class and 1.741s for a user of the “itinerario” class, that is more
than any other service. Again, in order to improve the overall performance, we
can enhance the speed of the mappe server. For this reason, we model the time
requested by the mappe service to process each visit as an exponential process
with a lambda factor of 0.0011 for the “itinerario” class and of 0.0050 for the
“puntuale” class. We re-run the simulation and we got the new D matrix, that
is reported in table 5.

Analyzing the result of the simulations, we can detect that the enhancement
is useful since the bottleneck on the mappe service is resolved. The new system
has a different bottleneck for each class: the one for the “puntuale” class is the
pagamento service (imposing the Dp

max to 0.5 s), while for the “itinerario” class
the bottleneck is the Frontend service (imposing the Di

max to 1.041 s). In order
to better understand the bottlenecks of the system, we plot the D values in a
convex hull diagram, that is reported in figure 3.

Analyzing the convex hull diagram, it is possible to visualize better the bot-
tlenecks of the system. The frontend and pagamento services are two potential
bottlenecks, while all the other services are dominated by this two services. For

10

- 46 -

“Puntuale” “Itinerario”
Frontend 0.352 1.041
Carrello 0.000 0.166
Mappe 0.300 0.900
Treno 0.075 0.266
Aereo 0.112 0.400
Taxi 0.075 0.600

Pagamento 0.500 0.166

Table 5: Simulated service residence with enhanced front-end and map services..

Figure 3: Convex Hull

this reason we can concentrate our analysis only on those two services. More-
over the convex hull shown that the bottlenecks services are used in a different
way from the two classes; for this reason we investigate the effect of the pop-
ulation mix on the performance. In multiple workload mixes across multiple
resources systems, changes in workload mixes can change the system bottle-
neck; the points in the workload mix space where the bottlenecks change are
called crossover points, and the subspaces for which the set of bottlenecks does
not change are called saturation sectors. The first analysis we performed is the
calculation of these saturation sectors.

In figure 4 is reported the saturation sector of the system, calculated analyt-
ically with JMT. If the population has only customers of the “itinerario” class,
the saturated service is frontend ; otherwise if the population is composed only
by customers of the “puntuale” class, the saturated service is pagamento. If the
users of the system are composed by a particular mix of these two classes, both
servers are saturated. If the system is in this situation, it has the maximum

11

- 47 -

Figure 4: Saturation sectors

throughput since two servers are used at their maximum capacity. The system
that we are analyzing has an optimal mix that has customers of the “puntuale”
class between the 66% and 95%.
In order to validate this result, we performed a what-if analysis with a fixed
population size and varying the mix of the two classes. In figure 5 is reported
the utilization of the three more used services (frontend, pagamento and mappe)
with respect to the population mix. The highlighted region is the common sat-
uration sector: if there are the correct mix of users, there are two servers that
are used almost completely. In this case we have the highest throughput, as
measured and plotted in figure 6.

Analyzing the results of this analysis, we can state that if we are smart
regarding the selection of users, we can serve more people without any server
upgrade. If we are able to dynamically monitor the execution of the workflow,
understanding the class that the user being served belongs to, we can detect
the current population mix. At this point we can understand if the system is
saturated, and in this case we should also check if the population mix is within
the common saturation sector. If the current mix is not in the saturation set,
we should take actions that tries to modify that mix. If the error is only a
transient one, we can adopt an intelligent routing strategy that select the job
belonging to the right class. Otherwise the problem is persistent, thus we can
adopt ad-hoc promotions that helps in filling the gap in the population mix.

12

- 48 -

Figure 5: What-if analysis: utilization w.r.t. population mix

Figure 6: What-if analysis: throughput w.r.t. population mix

13

- 49 -

6 Conclusion and Future Works

In this paper we described an approach for the performance prediction of service-
based applications. The approach can be used both to estimate performances
of a service composition at design time and to analyze composition QoS at run
time.
We demonstrated our approach on an example composition describing a travel
agency application. In our demonstration we could estimate the application
performances at deployment time, manually creating a QN model of our com-
position using as performance indices distributions of the service times of the
services invoked in the composition. We also used these data to estimate bottle-
neck of the system, to study saturation sectors and to plan a speed up of some
invoked services.
The approach was run manually, but it can be automatized. As a first step to-
wards the realization of this approach an automatic translation from the BPEL
specification to a queue network model is needed. This translation can take
as input a BPEL file and give as output a JSymGraph model file. This model
allows analyzing the queue network derivated from the BPEL composition using
JMT. To make possible this translation we need to extend the BPEL language
to make it possible to annotate QoS indices directly into the composition de-
scription.

References

[1] Daniel A. Menascé. Qos issues in web services. IEEE Internet Computing,
6(6):72–75, 2002.

[2] Andrea DAmbrogio. A model-driven wsdl extension for describing the qos
ofweb services. icws, 0:789–796, 2006.

[3] L. Baresi and S. Guinea. Towards dynamic monitoring of ws-bpel processes.
In ICSOC05, 3rd International Conference On Service Oriented Computing,
2005.

[4] Serazzi G Bertoli M., Casale G. The jmt simulator for performance evalua-
tion of non-product-form queueing networks. In ANSS07 Spring Simulation
Multiconference, 2007.

[5] G. Serazzi. Java modeling tools. http://jmt.sourceforge.net/.

[6] Luciano Baresi and Sam Guinea. Dynamo and self-healing bpel composi-
tions. In ICSE COMPANION ’07: Companion to the proceedings of the 29th
International Conference on Software Engineering, pages 69–70, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

14

- 50 -

Politecnico di Milano

Dipartimento di Elettronica e Informazione
Via Ponzio, 34/35 - 20133 Milano (MI) - Italy

Course: Advanced Topics in Computer system performance analysis
Teacher: Prof. Giuseppe Serazzi

Date: November, 2007

A Queueing Network Model of

a Parallel Application

Alessandro Lazaric and Roberto Turrin

{lazaric, turrin}@elet.polimi.it

- 51 -

1 Introduction

In recent years, large-scale problems have driven the development of high per-
formance computing (HPC) systems and a new class of applications based on
parallel computation. In fact, by means of parallel computation, the problem is
decomposed into lighter sub-problems faster to be solved. As a drawback, par-
titioning an application does not have a linear speed-up due to the presence of
an intrinsic serial fraction and to the overhead due to communications and syn-
chronization among distributed resources. Indeed, there exists an ideal trade-off
between partitioning and resulting overheads. Several performance models have
been proposed in the literature to evaluate the impact of such factors on the
system performance.

In this report, we describe and simulate a queueing network model to analyze
the performance metrics of a real parallel application based on a Monte-Carlo
method. The rest of the report is organized as follows. In Section 2 we introduce
the performance model. The parallel application is described in Section 3 and
its performance is evaluated in Section 4. Finally, we trace the conclusion in
Section 5.

2 Parallel application performance models

Parallel applications represent a family of algorithms in which the processing is
decomposed in many atomic and independent parts, referred to as tasks, which
are executed simultaneously using different resources. According to the appli-
cation characteristics and to the underlying architecture, there exist an optimal
way to split an application, which can be obtained by means of suitable per-
formance models. The dependency relationships among the tasks are typically
expressed by means of task graphs. A task graph contains complete informa-
tion about the application inherent parallelism: nodes represent tasks, and arcs
represent constraints (e.g., input/output data dependency or control flow) [4].

The first effort to model the performance of parallel programs is due to Am-
dahl and the well-known homonymous law [2], which states that the maximum
improvement of a parallel computation is upper limited by the inverse of the
application serial fraction. For instance, Figure 1 shows the behavior of the
speed-up of a parallel application as a function of the number of processors
allocated. Since the Amdahl’s law does not take into account the effect of com-
munication and synchronization among the resources (e.g., processors) on the
performance (e.g., execution time, speed-up), different extensions of such model
have been proposed [7, 8].

We base our analysis on the model presented in [5]. Let us assume the
application under analysis has an average sequential execution time µ, which
is the execution time expected when performed on a single node. The average
execution time of the whole application on multiple machines is defined as:

T (n) =
1

S(n)
µ (1)

1

- 52 -

0 20 40 60 80 100
0

5

10

15

20

25

30

Processors

S
pe

ed
−

up

1

fs

Figure 1: Speed-up with serial fraction equals to 5%.

where S(n) is a speed-up factor depending on the number of nodes n. S(n) can
be an aggregation of various factors.

Job partitioning divides a job into tasks that can be executed independently
and in parallel on a number of nodes to improve performance. The average
service time of one task can be defined as:

µ̃ = µ
1 + (n − 1)fs

n
(2)

where fs is the serial fraction of the specific job as defined by Amdahl in [2].
However, the execution on a parallel system brings to high variability in com-

putation and communication time. As a result, the synchronization among the
nodes smooths the benefits of partitioning. In general, the higher the variabil-
ity of computation, the greater the impact of synchronization. Such overhead
factor is referred to as the synchronization overhead On ≥ 1. As a result:

S(n) =
n

1 + (n − 1)fs

1

On
(3)

In order to compute On, it can be used a fork-join queuing network [3],
consisting of n identical delay service centers, each one representing a node.
Once the distribution of the task service times is known, it is possible to derive
On analytically.

3 Matrix Inversion algorithm

In this section we present a real parallel application that will be analyzed by
means of a queueing network (QN) model.

The application addresses the problem of inverting diagonally-dominant ma-
trices. A generic matrix A is called diagonally-dominant if |Aii| ≥

∑
j 6=i |Aij|,∀i.

The algorithm has been implemented with a Monte Carlo Markov Chain (MCMC)
method.

2

- 53 -

Figure 2: Task graph model of the application.

3.1 Application details

The algorithm has been implemented accordingly to the master-slave paradigm
and utilizes the interface for parallel algorithms MPI. The task graph in Figure
2 explains the algorithm workflow. At the beginning the master prepares the
data, calculating the intermediate matrices. Then the intermediate matrices
are broadcasted to the slaves. As soon as all the data are sent the slaves start
the computation. Afterward they send the result of their computation to the
master. Once the master has collected all the slave partial results, it assembles
them in the inverted matrix, which is the output of the process altogether. The
application receives, as input, 8000x8000 matrices.

3.2 Application modeling

We first present a brief analysis of the application assuming that it receives a
single matrix as input.

The incoming job (i.e., the matrix to be inverted) enters the master. The
master pre-computes the intermediate matrices (pre-processing) which are sent
to the slaves (data broadcast). Thereafter, each slave starts computing indepen-
dently the assigned task (MCMC) and then it sends the result back to master.
Finally, when the master has received all the partial results, it elaborates them
(post-processing) returning the inverted matrix.

The model parameters are the following:

• The pre-processing service time is pretty constant (SPRE = 4.156 seconds,
with coefficient of variation 0.0015446).

3

- 54 -

• The post-processing is negligible (SPOST = 0.009771 seconds, with coeffi-
cient of variation 1.5191).

• The local communication network is a 1Gbps switched Ethernet.

– The amount of data broadcasted to the slaves is 8K (2K + 1) bytes,
where K is the number of rows/columns of the input matrix, in our
case K = 8000. This is a locking point-to-multipoint communication
which uses the MPIBCast function. The service time of the data
broadcasting is given by:

SNET = K (2K + 1) · (0.2733 + 0.000413n) µsec (4)

– The amount of data sent from a slave to the master is 8K2/n bytes,
i.e., it decreases linearly with the number of nodes. This is a point-
to-point communication which can be neglected.

• The slave service time follows a Weibull distribution with scale B and
shape α. The slave service time expectation is expressed by (2), where µ
and fs are, respectively, the sequential time and the serial fraction of the
split code. Furthermore:

– The Weibull shape is assumed to be constant and equals to 1.3.

– The coefficient of variation γ is related to Weibull shape as:

γ =

√
Γ

(
α+2

α

)

Γ
(

α+1

α

) − 1 (5)

– The serial fraction fs is 3.8%

– The sequential time µ is 721.5 sec

As a consequence, the synchronization overhead On in (3) is given by [6]:

On =
n∑

k=1

(
n

k − 1

)
(−1)n−1

(n − k − 1)1/α (6)

3.3 Queueing Network Model

We extend the previous model to the case in which the system manages a
flow of matrices, i.e., we introduce queueing service centers. According to the
application workflow, the inversion of a matrix can be divided in one sequential
phase (i.e., the pre-processing and the data broadcast) and a parallel phase (i.e.,
the MCMC algorithm). The resulting model is depicted in Figure 3, where the
system is composed by two service centers, the master and the MCMC. While
the master performs the pre-processing and the data broadcasting, the MCMC
models the parallel computation of the Monte-Carlo algorithm. The model
assumes that:

4

- 55 -

Figure 3: QN model of the matrix inversion algorithm.

Figure 4: Compact model of the matrix inversion algorithm.

• The queueing discipline is FIFO (First-In First-Out)

• Queues are unbounded

• Communication do not compete for network resources

• Any incoming job waits in the fork queue until the previous one has been
completely executed

This model is an accurate approximation of the system for any number
of slaves n in the MCMC service center. Nonetheless, as n grows, we can
simplify the fork-join block by relying on the asymptotic results of Weibull
distributions [6]. As a result, when n tends to infinity, the system can be
modeled as in Figure 4, where MCMC is represented by a single service center
with service time equals to SMCMC ∼ DoubleExp(µ̃, α(n)). In the following,
we will refer to this model as the compact model.

4 Analysis of Simulation Results

In this section, we analyze the results obtained by simulating the system de-
scribed in the previous section. The service time Smaster = 41.191322sec. Fur-
thermore, we assume that the inter-arrival time of the incoming matrices are
modeled as an exponential distribution with parameter λ.

It is obvious that the bigger the system the higher its capability in tolerate
high workloads. This leads to a concept that we refer to as relative workload,

5

- 56 -

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

Relative Workload

S
ys

te
m

 R
es

po
ns

e
T

im
e

n=10
n=30
n=100

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

Relative Workload

M
C

M
C

 R
es

po
ns

e
T

im
e

n=10
n=30
n=100

Figure 5: System response time and MCMC response time for different relative
workloads.

which we express in terms of system utilization U . We indicate with U the max-
imum utilization among the different service centers and we define the relative
workload as the workload which leads to a certain U .

In the following analysis we evaluate the system performance metrics by
simulating it. In particular, we want to measure the impact of the main pa-
rameters characterizing the system: the number of partitions n, the coefficient
of variation γ, the utilization of the system U , and the serial fraction fs. For
each combination of the parameters, we report different measures: queue length,
response time, utilization of the service centers, and the system response time.
As first, we analyze the performance metrics with different relative workloads.
Therefore, we select a suitable relative workload and we vary the other param-
eters.

Since the queueing network modeling the application does not have a product-
form solution, we simulate the network by means of a simulation tool (JMT [1]).
In the following, we adopt the compact model when n ≥ 10.

4.1 Relative Workload

In this simulation we vary the relative workload λ such that the system utiliza-
tion is U = 0.1, 0.3, 0.5, 0.7, 0.9. For different values of U we expect the system
performance to follow the classical response time behavior, which is linked to
the workload with a non-linear relationship.

As shown in Figure 5, the system response time and the response time of
MCMC have exactly the same trend. The three lines refer to tests with different
level of partitioning. As it can be inferred, the value of U is not critical for the
system response time until a utilization of about 50%, while for high workloads
the response time increases at a very high rate. Furthermore, the number of
slaves n affects only the absolute values of the response time but it does not
significantly impact on their trend.

6

- 57 -

0 20 40 60 80 100
0

200

400

600

800

1000

1200

1400

Number of Slaves

S
ys

te
m

 R
es

po
ns

e
T

im
e

0 20 40 60 80 100
100

150

200

250

300

350

400

450

Number of Slaves

M
C

M
C

 R
es

po
ns

e
T

im
e

Figure 6: System response time and MCMC response time for different number
of partitions.

0 20 40 60 80 100
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of Slaves

M
as

te
r

U
til

iz
at

io
n

Figure 7: Utilization of the master for different number of partitions.

4.2 Number of partitions

Since the application under analysis is nearly embarrassingly parallel, the perfor-
mance of the system is strictly related to the number n of partitions (i.e., slaves
allocated). The more the number of slaves, the more the system benefits from
the possibility to run multiple jobs in parallel. Nonetheless, as n becomes very
high, the effect of the parallelism becomes less evident, while non-parallel parts
of the system gets more and more relevant.

Unlike the previous simulation, in this case we set the system utilization to
40% and accordingly the workload. Figure 6-left shows the system response
time for different values of n. For instance, the system response time with 40
slaves is about one tenth of the system response time when only 2 slaves are
available. On the other hand, by increasing the number of slaves from 40 to 100,
the advantage in terms of system response time becomes negligible. As shown
in Figure 6-right, the decrease in the system response time is mainly due to the
reduction of the response time of the MCMC service center. In fact, MCMC is
the only part of the system that can directly benefit from the increase in the
number of slaves, while the rest of the system performs serial computations.

7

- 58 -

0.5 1 1.5 2
0.2

0.4

0.6

0.8

1

Coefficient of Variation
M

C
M

C
 U

til
iz

at
io

n

n=10
n=30
n=100

Figure 8: Utilization of the MCMC for different coefficients of variation.

0.5 1 1.5 2
0

1

2

3

4

Coefficient of variation

M
C

M
C

 Q
ue

ue
 L

en
gt

h

n=10
n=30
n=100

0.5 1 1.5 2
0.05

0.1

0.15

0.2

0.25

Coefficient of Variation

M
as

te
r

Q
ue

ue
 L

en
gt

h

n=10
n=30
n=100

Figure 9: Queue length of the MCMC and of the master for different coefficients
of variation.

As the response time of the MCMC decreases, more matrices can be served
and, as shown in Figure 7, the utilization of the master increases. As a result,
the length of the master queue increases as well, but in both cases they do not
reach critical values that can represent a bottleneck for the whole system.

4.3 Coefficient of Variation

Another critical parameter for the system performance is the coefficient of vari-
ation γ (Equation 5). High values of the coefficient of variation γ indicates that
it is more likely for the slaves to have very different completion times. As a
result, we expect an increase in the synchronization overhead that causes the
performance of the MCMC to get worse. Furthermore, we expect this effect to
be more and more relevant as the number of slaves increases.

In the simulation we considered values of the coefficient of variation γ from
0.5 to 1.7. In Figure 8, we report the utilization of the MCMC service center.
While for low values of γ the utilization is low (about 30%) independently from
the number of slaves, when γ is high the synchronization overhead becomes

8

- 59 -

0 0.02 0.04 0.06 0.08 0.1
0

200

400

600

800

1000

Serial Fraction
S

ys
te

m
 R

es
po

ns
e

T
im

e

n=10
data2
n=30
n=100

Figure 10: The system response time for different serial fractions.

more and more relevant, so that most of the time is spent waiting for all the
tasks to finish and the utilization increases. Furthermore, it can be noticed that
when 100 slaves are allocated, the utilization becomes 100% and performance
metrics such as the response time and queue length diverge (Figure 9-left).

Finally, in Figure 9-right, we report the master queue length. As it can be
noticed, the queue length is constant independently from the value of γ. In fact,
in these experiments the system is operating with a constant relative workload.

4.4 Serial Fraction

The serial fraction fs determines the parallelization capability of an application
and it has a significant impact on the system performance. In particular, as fs

increases the application does not take any advantage from being concurrently
executed and we expect overhead and partitioning to become more and more
relevant in the overall system performance.

Figure 10 shows the system response time for different values of fs varying
from 0.001 to 0.1 and with a number of slaves n from 10 to 100. For low values
of fs there is a good trade-off between the cost of partitioning and overhead,
and the advantage of the parallelization of the application. As a result, the
system greatly benefits from a huge number of slaves and the system response
time for n = 100 is about one third of that for n = 10. Nonetheless, already for
fs = 0.03, the overhead for n = 100 becomes relevant and the response time is
exactly the same as in a system with only 30 slaves. Finally, for fs > 0.05 there
is almost no advantage in parallelizing the application and the system response
time for n = 30 and n = 100 diverges.

5 Conclusions

In this report we analyzed the performance of a parallel application by means
of a queueing network model. In particular, we simulated the system in order
to evaluate the sensitivity of the performance metrics to different workload

9

- 60 -

intensities (λ), levels of parallelization (n), application (fs) and architectural
features (γ). The simulation results highlighted that the serial fraction and the
variability of the service times significantly affect the system performance, the
most important being the response time.

Bibliography

[1] Java modeling tools. http://jmt.sourceforge.net.

[2] G. M. Amdhal. Validity of the single processor approach to achieving large
scale computing capabilities. In Proc. AFIPS 1967 Spring Joint Computer
Conference, volume 30, pages 483–485, April 1967.

[3] Francois Baccelli, William A. Massey, and Don Towsley. Acyclic fork-join
queuing networks. J. ACM, 36(3):615–642, 1989.

[4] E. G. Coffman and P. J. Denning. Operating System Theory. Prentice–Hall,
N. J. Henglewood Cliff, 1973.

[5] Paolo Cremonesi and Roberto Turrin. Performance models for hierarchical
grid architectures. In Proc. of the 7t̂h IEEE/ACM International Conference
on Grid Computing, pages 1–8, Barcelona, Spain, September 2006.

[6] H. A. David and H. N. Nagaraja. Order Statistics - Third Edition. John
Wiley & Sons Ltd, 2003.

[7] Tristan Glatard, Johan Montagnat, and Xavier Pennec. Probabilistic and
dynamic optimization of job partitioning on a grid infrastructure. In PDP
’06: Proceedings of the 14th Euromicro International Conference on Par-
allel, Distributed, and Network-Based Processing (PDP’06), pages 231–238,
Washington, DC, USA, 2006. IEEE Computer Society.

[8] Lorenzo Muttoni, Giuliano Casale, Federico Granata, and Stefano Zanero.
Optimal number of nodes for computation in grid environments. In Proc. of
the 12t̂h Euromicro Conference on Parallel, Distributed and Network-Based
Processing (PDP04), pages 282–289, A Coruna, Spain, February 2004. IEEE
Computer Society.

10

- 61 -

intensities (λ), levels of parallelization (n), application (fs) and architectural
features (γ). The simulation results highlighted that the serial fraction and the
variability of the service times significantly affect the system performance, the
most important being the response time.

Bibliography

[1] Java modeling tools. http://jmt.sourceforge.net.

[2] G. M. Amdhal. Validity of the single processor approach to achieving large
scale computing capabilities. In Proc. AFIPS 1967 Spring Joint Computer
Conference, volume 30, pages 483–485, April 1967.

[3] Francois Baccelli, William A. Massey, and Don Towsley. Acyclic fork-join
queuing networks. J. ACM, 36(3):615–642, 1989.

[4] E. G. Coffman and P. J. Denning. Operating System Theory. Prentice–Hall,
N. J. Henglewood Cliff, 1973.

[5] Paolo Cremonesi and Roberto Turrin. Performance models for hierarchical
grid architectures. In Proc. of the 7t̂h IEEE/ACM International Conference
on Grid Computing, pages 1–8, Barcelona, Spain, September 2006.

[6] H. A. David and H. N. Nagaraja. Order Statistics - Third Edition. John
Wiley & Sons Ltd, 2003.

[7] Tristan Glatard, Johan Montagnat, and Xavier Pennec. Probabilistic and
dynamic optimization of job partitioning on a grid infrastructure. In PDP
’06: Proceedings of the 14th Euromicro International Conference on Par-
allel, Distributed, and Network-Based Processing (PDP’06), pages 231–238,
Washington, DC, USA, 2006. IEEE Computer Society.

[8] Lorenzo Muttoni, Giuliano Casale, Federico Granata, and Stefano Zanero.
Optimal number of nodes for computation in grid environments. In Proc. of
the 12t̂h Euromicro Conference on Parallel, Distributed and Network-Based
Processing (PDP04), pages 282–289, A Coruna, Spain, February 2004. IEEE
Computer Society.

10

- 62 -

2 – Capacity Planning of Enterprise
Systems

2.1 – Capacity Planning of an Hospital Intranet with Multiclass Workload 64
2.2 – Intranet with Web Servers and RAID-0 Storage 74
2.3 – A Network with Finite Capacity Region and Drop Rule 101

- 63 -

Capacity Planning of an Hospital Intranet With a

Multiclass Workload

Guido Salvaneschi
guido.salva@gmail.com

Project for the course ‘Computer
Performance Evaluation Techniques and Application‘

May 22, 2008

Abstract

The subject of this work is the intranet of an hospital with a 3-tier ar-
chitecture implemented with Local Area Network. The resulting two class
closed model with a fixed number of customers has been analyzed. The
values of the more interesting performance indexes are derived. Two dif-
ferent what-if analyses are given: increasing the number of customers and
changing the mix of the jobs in execution. We use the following tools of
the JMT [1] package: JSIM for simulation, JMVA for exact solutions and
what-if analyses, and JABA for bottleneck multiclass identification.

1 Introduction

The paper is organized in the following way. In Section 2 we give a general
overview of the context in which the system operates. In Section 3 we describe
the technical aspects of the system structure and how they are mapped into
our model. We explicitly emphasize the process of realizing a model from a
limited slice of reality. Section 4 gives the main performance indices obtained
by JMVA and JSIM in the usual working point of the system and provides a first
bottleneck identification, while Section 5 is aimed to show the behavior at the
increasing customers number. In Section 6 we expose the multiclass analysis, i.e.
the changing of performance indices while the ratio between classes changes. We
use JSIM for multiclass performance indices analysis and JABA for bottleneck
representation in multiclass regime. An introduction in system performance
with the fondmental laws partially showed in this paper see [7], while the JMT
tool is described in [6] [5] [4].

2 Problem Description

The system under analysis is part of the IT infrastructure of an hospital. The
information system is aimed to manage the patient history, e.g. the date of arrive
in the hospital, previous diseases, or notes related to his convalescent as daily-
measured temperature. We now give a brief idea of the available functionalities.

1

- 64 -

Figure 1: A representation of the system under analysis: a Local Area Network
and a 3-tier architecture.

The medicines prescriptions are centrally manged: doctors insert the desired
quantity for a certain patient and the pharmacy of the hospital make orders for
the whole amount of a needed medicine. All the doctors have a PC in their
ambulatory which they use to insert data from visits and prescriptions. The
nurses have an instrument similar to a notebook to insert values of temperature,
pressure, etc, while they are next to the bed of the patient. They also obtain
from the system the quantity of medicine for the patient. Obviously there are
functionalities that give the possibility to create a new file for a patient and
retrieve a file searching for his name or bed number.

3 Architecture and Model

We suppose that the number of customers remains constat which leads to the
choice of a closed model for the representation of our system. The local network
has been implemented with a fast 100 Mbit ethernet connection, which let us
suppose that the impact of the delay imposed by wireless and wired communi-
cations is negligible due to the speed guaranteed by the infrastructure.
Customers wait in mean a few seconds after submitting a new request to the
system, which results in a delay station in our model. We suppose that the
delay between HTTP requests is 1 second, supposing that several elements are
present in a browser page. The interaction of the customers with the system is
provided by a web application with a browser on client side and a typical 3-tier
architecture on server side. The requests are submitted to a web server; in case
of a static page the HTTP response is immediately passed back to the client,
otherwise the web server interacts with an application server that performs some
queries on a backend database and processed data are passed back to the web
server. Finally clients receive the dynamically-generated page.
The storage consists of 3 database servers in parallel. The attribution of a job
to one of the storage servers is done by a load-balancer in a random way. The
distribution of the requests among the three servers is uniform. We suppose
negligible the delay introduced by the load-balancer in the reasonable hypoth-
esis of a minimal processing inside the load-balancer.

2

- 65 -

LightLoad HeavyLoad
Web Server 1.40 1.10
App Server 2.10 1.50
Storage 1 1.10 2.90
Storage 2 1.20 2.70
Storage 3 1.10 2.80

Figure 2: Service demands in milliseconds for each station in the system. The
different values of the two classes are due to the different behavior of the two
types of users.

We subdivide the requests arriving at the system in two groups: the requests
for a database search ad the requests for a database modification. The two
groups are modelled by classes with different service time for each station. Con-
sidering the point of view of the database we refer to the search-class and the
modification-class as the HeavyLoad class and the LightLoad classes. In fig. 2
are reported the service demands for each station in the system and for each
class.

4 Working condition analysis

In this section we present the analysis of the system in its usual load condition.
We estimate that 1000 customers are present in the system. The ratio between
the number of HeavyLoad requests and the LightLoad requests is about of 3/7,
which results in 300 jobs of LightLoad and 700 jobs of HeavyLoad.
The analysis of the working condition can be performed either with JSIM
through a simulation or with JMVA which is an exact solver. Due to the sim-
plicity of our model we chose the second option (the first implies a long-running
process and approximate results in a confidence interval; in our tries with JSIM
similar results to JMVA has been found).
In fig. 3 we present the results of JMVA analysis. Note that the values of the
utilization show that the bottleneck in the usual workload is the application
server. In fact the value of the utilization of that station is 1 indicating the
complete saturation of the server.

5 What if Analysis for Scalability

In this section we provide an analysis of the system behavior while the number
of customers increases. We increase the absolute number of customers from 10
o 1000 while keeping the mix of jobs,i.e. the percentage of the jobs of each class,
constant.
In fig. 5 we plotted the values of the system throughput in function of the
number of customers in the system. The saturation is reached at about 600
customers. In fig. 6 there is the plot of the system responce time. The figure
shows the linear rising of the responce time after an initial phase. The linear
gain could be easily forecast by the well-known asymptotic law:

R(N) ≥ max(D,NDmax − Z)

3

- 66 -

System Throughput 0.52519
System Resp. Time 1904.06403

Utilization
Web Server 0.68381
App Server 1.00000
Storage 1 0.88749
Storage 2 0.86927
Storage 3 0.88642

Figure 3: JMVA exact analysis with the following parameters: 1000 customers,
700 LightLoad, 300 HeavyLoad, delay of 1 sec. and service demands in fig. 2.
Values are in milliseconds

Figure 4: The system model of the JSIM. Note that we are allowed to use this
topology since we consider the service demands (Di = SiVi) for each resource
and not the visits Vi and the service times Si as parameters of the model.

4

- 67 -

Figure 5: Global system throughput in function of the number of customers.
The saturation is reached at about 600 customers.

Figure 6: Global response time in function of the number of customers in the
system keeping constant the mix of the two classes. Accordingly to the theory
for high values of the num. of customers, the response time grows linearly.

where D is the service demand of the whole system, N is the number of customers
ad Z is the think time, i.e. the interval they wait in mean.
The presence of a bottleneck means that the corresponding station works at his
best and the load of the other stations remains limited also while the number of
customers increases. In fig. 7 we plot the values of utilization in function of the
growing customers. It is evident that the application server reaches saturation
as first and constitutes the bottleneck for the whole system. This implies that
after the saturation of the application server (at about 600 jobs), the throughput
of the system remains constant (see the system behavior in fig. 5).

6 Multiclass Analysis

In this section we provide an analysis of the system behavior with all the possible
mixes of jobs. First of all we use JMVA in order to study the behavior of the

5

- 68 -

Figure 7: Utilization of each station in function of the rising number of customers
in the system. The upper line refers to the application server, the lower line
refers to the web server and the other three lines represents the storage servers.
Accordingly to the theory the utilization time has an horizontal asymptote.

system while the ratio between the elements of the two classes changes. Than we
give some diagrams obtained by JABA which are useful for bottleneck detection
in multiclass environment.

6.1 Multiclass with JMVA

We have performed a what-if analysis with the aim to understand the behavior
of the system under study with the change of the ratio between the two classes.
The goal of this type of work is to establish the ideal mix under which to
guarantee the best performance.
In fig. 8 we represent the throughput of the system. The plot shows an initial
rising while the HeavyLoad increases; in the interval between 0.4 and 0.5 it
presents a plateau in which the throughput is maximum and constant. After 0.5
the performance have a degradation while the percentage of HeavyLoad strongly
increases. We can conclude that the optimal mix between HeavyLoad class and
LightLoad class is in the interval 0.4 - 0.5, which is the range that maximize the
throughput.
In the plot in fig. 9 we show the responce time of the system in function of the
ratio between classes. The behavior of this function can be recognized to be the
dual of the global throughput of fig. 8: a progressive reduction of the responce
time, a plateau in the interval 0.4 - 0.5 and a following rising are evident.
A further analysis gives a more precise reason of the behavior of the system. In
particular it explains the presence of a plateau with maximum performance. In
fig. 10 there are the utilizations of each station in the system while classes ratio
changes. In the plot the utilization of the application server starts at the value
of 1, i.e. the application server is bottleneck when the amount of HeavyLoad
class is low. The utilization of the storage for low values of the class HeavyLoad
is about 0.4 - 0.5 and rises while the ratio increases, reaching 1 for the ratio
value 0.4. This results in the plateau of above: at 0.4 the storage server reaches
the saturation while the application server still is in saturation. After 0.5 the

6

- 69 -

Figure 8: System throughput as a function of the ratio between HeavyRequest
and LightRequest.

Figure 9: The system response time as a function of the ratio (mix) between
HeavyRequest and LightRequest. The line starting from 1.8 represents the
response time for the HeavyLoad class, while the other line is referred to the
LightLoad class. Values are in milliseconds.

7

- 70 -

Figure 10: Values of the utilization for the stations of the system as a function
of the ratio HeavyLoad and LightLoad. The line starting at value 1 (100%
utilization) represents the application server, the lower line is the web server,
and the tree overlapping lines are the three storage servers.

utilization of the application server begin to lower and the only bottleneck is the
storage server. We evidence that the plateau is indeed an interval of common
saturation which means that two bottlenecks are present in the system at the
same time. This area is the interval of major stress for the servers and this
results in the hightest throughput showed in fig. 8.

6.2 Multiclass asymptotic analysis with JABA

JABA is a tool specifically designed for the bottleneck identification in multi-
class closed systems. In fig. 11 we show the plot of the saturation sectors. In
the graph are represented three condition of work of the system. For light load
of HeavyLoad class the bottleneck turns out to be the application server, while
for light load of the HeavyLoad class (i.e. heavy load of LightLoad class) the
bottleneck is the storage server.
The graph provides an additional information regarding the fact that there is
an interval of common saturation in which both the application end the stor-
age server are bottlenecks. We now give a more rigorous explanation of these
phenomena. A natural bottleneck of a system is the station whose utilization
tends to one when the number of customers in the network grows to infinity,
given that the network is used by class-r customers only. The bottleneck mi-
gration is the fact that the bottleneck of the system can migrate among the
stations when the population mix changes. Our study has identified distinct
natural bottlenecks for different classes. This means that keeping the total pop-
ulation of the network constant (and high) and varying the population mix, we
may observe the bottleneck migration phenomenon.In particular, fig. 11 can
be interpreted in terms of saturation sectors i.e. regions on the line where two
stations saturate simultaneously, and switching points, where stations change
their bottleneck/non-bottleneck status. A more general survey of these topics
an an accurate mathematical background is in [3] and [2].
The second type of plot retrieved by JABA is the saturation hall graph shown

8

- 71 -

Figure 11: The plot of the saturation sectors. In the central part of the line
there is the area of common saturation.

in fig. 12. On the border of the polygon there are the two possible bottlenecks,
the application server and the storage. Being in the internal part of the polygon,
the web server is never the bottleneck, i.e. for any class mix.

6.3 Conclusions

The performance of an hospital intranet with a workload consisting of two classes
of customers has been analyzed. Asymptotic values of performance indices are
obtained as a function of the mix of jobs of the two classes in concurrent exe-
cution.
Optimal operational condition of the system, i.e. the mix of customers that
provides the maximum throughput and correspondingly the minimum response
time is between the interval 0.4 - 0.5 as shown in figures 8 - 9 and 10. This op-
timal operation condition is a subset of the common saturation sector identified
in fig. 11 where either the application server and the storage saturate together.

References

[1] http://jmt.sourceforge.net.

[2] Gianfranco Balbo and Giuseppe Serazzi. Asymptotic analysis of multiclass
closed queueing networks: common bottleneck. Perform. Eval., 26(1):51–72,
1996.

9

- 72 -

Figure 12: The plot of the convex hull. The two possible bottlenecks, the
application server and the storage, are on the border of the polygon. The dark
part of the polygon represents the masked-off area, while the light part is the
dominated area.

[3] Gianfranco Balbo and Giuseppe Serazzi. Asymptotic analysis of multiclass
closed queueing networks: multiple bottlenecks. Perform. Eval., 30(3):115–
152, 1997.

[4] M. Bertoli, G. Casale, and G. Serazzi. Java modelling tools: an open source
suite for queueing network modelling and workload analysis. In Proceedings
of QEST 2006 Conference, pages 119–120, Riverside, US, Sep 2006. IEEE
Press.

[5] M. Bertoli, G. Casale, and G. Serazzi. An overview of the jmt queueing
network simulator. Technical Report TR 2007.2, Politecnico di Milano -
DEI, 2007.

[6] Marco Bertoli, Giuliano Casale, and Giuseppe Serazzi. The jmt simulator for
performance evaluation of non-product-form queueing networks. In Annual
Simulation Symposium, pages 3–10, Norfolk,VA, US, 2007. IEEE Computer
Society.

[7] G. Scott Graham Kenneth C. Sevcik Edward D. Lazowska, John Zahorjan.
Quantitative System Performance Computer System Analysis Using Queue-
ing Network Models. Prentice-Hall, 1984.

10

- 73 -

1

Luca De Fulgentis
708268

Intranet with Web Servers
and RAID-0 storage

February 2008

Project for the course :

”Performance Evaluation : Techniques and Models”
Prof. G. Serazzi

- 74 -

2

Contents

1 Introduction ………………………………………………… 3
2 Problem Definition ……………………………………………. 4
3 Model Description .. 5
4 Model Simulation …………... 9

4.1 JSIMGraph Simulation ………………………………………. 9
4.2 What-If Analysys ……………….……………….…………... 12

4.2.1 Increment of the Visitors Arrival Rate …….……… 13
4.2.2 Increment of the Players Arrival Rate ……………. 21

- 75 -

3

Section 1

Introduction

This paper discusses the modelling and analysis of an entertainment system based on a cluster of
web servers and a storage server consisting of RAID (type 0, striping mode) temporary data storage.
The entertainment system modelled is characterized by two classes of users : the first class is
represented by users that navigate the system web pages while the second class describes users
gaming (fast online game) utilizing the system as temporary data repository (i.e., a client will be
installed on the user station when the game starts and typically submits a sequence of web request
to save temporary game status). We simulated and evaluated the model performance using JMT
(Java Modelling Tools) version 0.7.3.

- 76 -

4

Section 2

Problem Definition

The system considered in the study is composed by two web servers running Apache and a RAID-0
storage server used to store temporary data. The system receives requests from two classes of users.
The first class (referred to as Visitors) represents users that navigate system web pages, while the
second class represents users that store temporary data through web server on a storage server
(referred to as Players, i.e. users that are playing a game). In Figure 1.1 we can see a high-level
system representation. Requests arriving from internet visit first a Load Balancer, a traffic balancer
used to distribute the traffic between two web servers. The purpose of the load balancer is to
increase web server scalability. The objective is to handle high volumes of incoming traffic by
using a cluster of web servers behind the load balancer itself.

Figure 1.1 – System to model

The two web servers use Apache as HTTP Daemon, and we established a limit on the number of
users (including both players and visitors) in concurrent execution that is set to 30. This limitation
has been set in order to guarantee an acceptable level of performance, i.e. to avoid the congestion of
the resources. The RAID-0 (Redundant Array of Independent Disks) storage system is a set of disks
that in our specific example are used in RAID-0 mode : this means that a block of data (temporary
data) is stripped between two or more disks. Because of this, data is segmented in strip unit (i.e., a
fix length data unit) that are then distributed on various disks (in our example 3 disks). RAID-0
configuration ensures high performance but has a very low reliability (the probability of the failure
of a disk is equal to 1/number of disks) due to lack of data redundancy. We decide to use the RAID-
0 model because of its high level of performance and because this is a critical factor in
entertainment systems.

- 77 -

5

Section 3

Model Description

In this section we will describe the architecture of the model developed. We used the tool
JSIMgraph to represent and solve this model (see Figure 2.1). We modelled our system as an open
model. A job enter the model, it visit several service stations, and then exit the model. An important
characteristic of this model is that a job should not be understood as a request for a single resource
but as a complete user interaction with the system. Because of this we can see a job as a user that
cycles through system’s resources. We used several feedbacks to represent the user behaviour of
looping inside model stations during its interaction (i.e., during the execution of a game or during a
navigation session). A first feedback was introduced between the web servers and the Delay_1
element to simulate that most of the time (70% in our model) user requests more than a single web
page during its navigation. We also introduced a feedback between the Join_Storage (at the end of
the storage system) and web servers’ Load Balancer. This feedback connection represents the cycle
followed by users that to submit continuously data while they playing online game. Even in this
case most of the jobs (96%) return back to Load Balancer element..

Figure 2.1 – System Model

- 78 -

6

Tables 2.1 and 2.2 shows job class routing probabilities.

Visitors Class From/To
Sink_1 Delay Fork_Storage

Web Server 1 0.3 0.7 0
Web Server 2 0.3 0.7 0

Table 2.1 – Class Visitors Routing Probabilities

Players Class From/To
Sink_1 Load Balancer Fork_Storage Sink_2

Web Server 1 0 0 1 0
Web Server 2 0 0 1 0
Join_Storage --- 0.96 --- 0.04

Table 2.2 – Class Players Routing Probabilities

Another important characteristic of the model is the workload characterization. We defined two
classes of users (jobs) :

• Visitors : represent a system interaction where a user navigates system web pages, but this
operation doesn’t involve the RAID system. Because of this a job belonging to this class
will spend all of its time in the Web Server (and delay) stations;

• Players : Players jobs represent a user system interaction that involves the RAID System. In
this case jobs remain most of their time in the storage stations than in web server stations.

We model the Visitors/Players traffic with an exponential distribution of interarrival times with
arrival rate : see Table 2.3

Class Arrival Rate jobs/seconds users/day

λ VISITORS

1

86400

λ PLAYERS

2

172800

Table 2.3 – Job Class Arrival Rates

- 79 -

7

A detailed description of model elements follows :

• Source (1) : This element is used to generate customers for the open classes. We need of this
element because open classes are characterized by an infinite stream of jobs (here
web/storage request as mentioned above). We use the traffic generator to introduce jobs in
the model;

• Load Balancer (2) : The load balancer mentioned in the introduction section is represented
by a routing station that distributes the arriving jobs to the connected output stations (two
web servers) according to a routing strategy. We established that Load Balancer distributes
50% of the job’s population on the first web server and 50% on the second one, regardless
of job class;

• Web Server 1 & 2 (3) : Apache web servers are modelled with two same Service Stations.
The queue policy used for both web stations is First Come First Server (FCFS). Under this
queuing discipline customers are served in the order in which they arrive at the station.
Another system’s important characteristic is that a service station takes different time to
serve a job depending on the job’s class. The meaning of this behaviour is that a Visitor
must be processed in a longer time respect to a Player because the second one will not
request any computation, but must only pass through the station. Details about web servers’
Service Time are reported on Table 2.5.

We used two different (but very close) values for the web servers’ service time because we
wanted to simulate two realistic web servers which, while having the same hardware, have
obviously different performance.

The two web servers are situated inside a Finite Capacity Region (FCR). A FCR is a region
of the model where the number of customers is controlled. The maximum number of users
connected concurrently is limited in order to guarantee an acceptable Quality of Service
(QoS) in terms of performance : we fixed a maximum users number equal to 30. We used a
Shared FCR because we set an upper bound for the number of customers that are in the
region, regardless of the classes they belongs to.

• Delay_1 (4) Delay_2 (5) : Customers that arrive at this station are delayed for the amount of
time that defines the station service time. We used the Delay_1 Station to simulate user
think-time, and so the average time that a user spends to read a web page. We defined it as a
high value because we also would to represent the networking infrastructure delay. Delay_2
Station was used to simulate the periodically sending of game status from players game
client . Table 2.4 shows delay station service times.

- 80 -

8

 Visitors Job Class [sec.] Players Job Class [sec.]

Delay Station Service Time

20

10

Table 2.4 – Delay Station Service Time

• RAID Sub-system (6) (7) (8) : The RAID subsystem models the usage of three disks
organized in RAID-0 mode. When a job arrives at the fork element called Fork_Storage (6),
a fixed number of tasks are generated on its forward link. The three new tasks corresponding
to the original job are then processed by three different service stations called Disk 1/2/3
(details in Table 2.5). A Disk element represents a single disk of the RAID system. The fork
element is used to simulate the striping process that involves the data to write.

Such as Web Server service time, we used three different but very close values for disks’
service time because we would simulate a RAID disks configuration where we have the
same disks but that obliviously have small performance differences. In our model, disks’
service time represents time needed to store a single strip unit on disks. When the three tasks
are ended, the model ensures that the three jobs collapse in the original one by using the
Join_Storage (8) element. The join element waits for the complete execution of all the tasks
of the fork and recreates the original job back;

• Sink_1 and Sink_2 (9) : Two Sink Station were used to model customers leaving the

system. The first element only involves Visitors jobs while the second one only Players jobs.

Service Station Visitors Job Class [sec.] Players Job Class [sec.]
Disk 1 --- 0.006
Disk 2 --- 0.0058
Disk 3 --- 0.0062

Web Server 1 0.200 0.015
Web Server 2 0.198 0.018

Table 2.5 – Stations Service Time

A note on Table 2.5 : Disks 1/2/3 Service Time values for Visitors jobs are not indicated because
these jobs don’t utilize disk stations.

- 81 -

9

Section 4

Model Simulation

4.1 JSIMGraph Simulation

In this Section we present the model simulation results obtained using JSIMGraph tool. The results
refer to the parametric values reported in Section 3. Model simulation results follow :

• Utilization :

Table 4.1.1 shows simulation results about web server’s utilization :

 Visitors Class Players Class All Classes
 Min Avg. Max Min Avg. Max Min Avg. Max

WS 1 0.293 0.311 0.329 0.181 0.202 0.222 0.596 0.624 0.652
WS 2 0.289 0.299 0.308 0.261 0.285 0.308 0.567 0.608 0.649

D1 0.641 0.658 0.674
D2 0.643 0.660 0.677
D3

0.678 0.691 0.703

Table 4.1.1 –Utilization for System Resources

Table 4.1.1 shows utilization results for system resources. As we can see there are no value
for Visitor Class disk utilization, because these jobs don’t use these resources.

• System Throughput :
.
System throughput simulation tells how many jobs (users) leaves the system per second :

 Visitors Class Players Class All Classes
 Min Avg. Max Min Avg. Max Min Avg. Max

X 0.941 0.972 1.006 1.483 1.516 1.550 2.387 2.471 2.562

 Table 4.1.2 – System Throughput

Table 4.1.2 shows that not all jobs that enter the system, exit it. This is because part of the
Players jobs (about 0.5 jobs/sec, referred to as λ PLAYERS = 2 jobs/sec.) are dropped by
system because of the FCR control.

- 82 -

10

• Response Time :

With this simulation we want to know the average time a job/user spends in the system, both
if it is referred to as Visitors or Players users. Because a job exits the system only when the
user terminates the interaction, the response time measures the session duration. Simulations
results show that Visitors jobs navigate for an average time of 40 seconds, while Players
jobs play online game for an average time of about 180 seconds (~3 minutes) (See Table
4.1.3).

 Visitors Class [sec.] Players Class [sec.]
 Min Avg. Max Min Avg. Max

R 42.272 43.973 45.674 174.323 180.894 187.465

 Table 4.1.3 – Global System Response Time

Figure 4.1.1 – System Response Time

• Single Station Response Time :

This index refers to the time a user of type Visitors is forced to wait for the download a
complete web page. Table 4.1.4 shows an average time of about 0.36 seconds.

- 83 -

11

 Visitors Class
 Min Avg. Max

Web Server 1 0.346 0.368 0.389
Web Server 2 0.347 0.367 0.387

Table 4.1.4 – Single Web Server Response Time

Figure 4.1.2 – Single Web Servers Response Time

• FCR Drop Rate :

Drop Rate simulation shows how many users are dropped by the control of the FCR. Table
4.1.5 shows these values :

 Visitors Class Players Class
 Min Avg. Max Min Avg. Max

Drop --- 0.044 --- 0.499 0.521 0.546

 Table 4.1.5 – FCR Drop Rate

Table 4.1.5 shows that the large part of the dropped jobs belongs to Players class.

- 84 -

12

4.2 What-If Analysis

A What-If Analysis consists of a series of simulations in which one or more parameters are varied
over a specified range. This allows the observation of system behaviour under a spectrum of
conditions, unlike the single JSIMGraph simulation run where the system is observed under a
specific set of configuration parameters. During our study we varied the value of the job’s arrival
rates and we studied the performance of our model.

Table 4.2.1 shows Players/Visitors jobs arrival rate increments realized during the what-if analysis :

Class Arrival Rate jobs/seconds new jobs/sec new users/day % increment

λ VISITORS

1

2

172800

+ 100%

 λ PLAYERS

2

4

345600

+ 100%

Table 4.2.1 – Arrival Rate Increment of the two classes of users

Section 4.2.1 will present Players jobs class arrival rate increment and section 4.2.2 the Visitors one.

- 85 -

13

4.2.1 Increment of the Visitors Arrival Rate

This subsection will presents What-If analysis results when the Visitors arrival is incremented by
100%. This simulation permits to study the system performance variation with an increment of
visitors that correspond to an increment of users during week-ends.

• Web Servers Utilization :

Figure 4.2.1.1 - Web Server 1 Utilization

Figure 4.2.1.2 – Web Server 2 Utilization

- 86 -

14

Figures 4.2.1.1 and 4.2.1.2 show how the web servers utilization is increased of an
average value of about 15% with the Visitors arrival rate increment. We will better
investigate the impact of this utilization increment studying the single web server
response time.

• Single Web Server Response Time for Visitors Job Class :

Figure 4.2.1.3 – Web Server 1 Response Time

Figure 4.2.1.4 – Web Server 2 Response Time

- 87 -

15

Figures 4.2.1.3 and 4.2.1.4 show how the increment of the 15% of the web server utilization
causes a performance worsening resulting in a doubled web server response time. This
means that users are forced to longer wait for the download of an entire web page.
However the new response time (about 0.45 seconds) is still an acceptable waiting time
value.

• Storage Disks Utilization :

Figure 4.2.1.5 – Disk 3 Utilization : Disk 1 and 2 have similar behaviour

If we consider an initial average utilization of 60-70% for all the three disks, we can
see that the Visitors jobs increment causes a reduction of the utilization of the disks
that is about 45%. This situation can be explained by the higher number of Visitors
jobs (we incremented Visitors arrival rate) which spend more time in the web server
than Players ones. Because of this Players jobs are delayed and this causes two
effects : first of all Players jobs have an higher probability to be dropped in the FCR
(because of their accumulation, will be demonstrated with the FCR jobs mix graph)
and then a lower number of Players exit FCR and enter the storage servers resulting
in disks utilization reduction.

- 88 -

16

• Finite Capacity Region Drop Rate :

Figure 4.2.1.6 – Class Visitors FCR Drop Rate

Figure 4.2.1.7 – Class Players FCR Drop Rate

Figures 4.2.1.6, 4.2.1.7 show that the most dropped jobs belong to Players class. This
justifies the disks utilization reduction shown in Figures 4.2.1.5. We can also see that
even in the worst situation almost all Visitors jobs are served by web servers.

- 89 -

17

• System Throughput :

Figure 4.2.1.8 – Class Visitors System Throughput

Figure 4.2.1.9 – Class Players System Throughput

Because of the high number of dropped Players in FCR, the system throughput for
this class slows decreasing behaviour. See Figure 4.2.1.9.

- 90 -

18

• Single Disk Response Time :

Figure 4.2.1.10 – Disk 2 Response Time : Disk 1 and 2 have a similar behaviour

Because of the Players jobs reduction the disk utilization was considerably reduced
(as shown in Figure 4.2.1.5). The same happened to single disk response time as
show in Figures 4.2.1.10 because of the lighter disk load.

• Global System Response Time

In this subsection we present the simulation results for the Global System Response
Time. It represents the average duration of a user session.

- 91 -

19

Figure 4.2.1.11 – Class Players Global System Response Time

Previously we introduced the disks utilization and response time reduction. These
factors caused the Players Global System Response Time reduction shown in Figure
4.2.1.12. That’s because there are less jobs that faster loop within the system.

Figure 4.2.1.12 – Class Visitors Global System Response Time

- 92 -

20

In the case of Visitors jobs we also have a system response time reduction, that
corresponds to a reduction of the visitors web navigation session duration. If a job
doesn’t loop inside the FCR (the faster ones) are the ones who have the higher
probability to exit the system and contribute to the calculus of system response time.

• Visitors/Players Mix in the FCR :

We investigated the results obtained with Global System Response Time by
calculating the mix of Visitors/Players in FCR region. Figure 4.2.1.13 was obtained
through a series of what-if analysis where we obtained the queues length inside the
FCR region. These values where then added to obtain the number of jobs in the
region.

Figure 4.2.1.13 – Jobs Mix in FCR

Figure 4.2.1.13 shows how the progressive increment of Visitors also causes an
increment of the number of Players in web servers queue. That’s because Visitors
spend more time in the stations (they have an higher service time) then Players one,
and this mean that Players must wait a longer time before being served. An higher
number of Players in FCR also means that these jobs have an higher probability to be
dropped. The more they loop in the system (96%) the more they have an higher
probability to be dropped in FCR. And so jobs that contribute to Global Response
Time are the ones who loop as little as possible.

- 93 -

21

4.2.2 Players Arrival Rate Increment Simulation

This subsection will presents What-If analysis results when the Visitors arrival is incremented by
100%. Even in this case, the jobs arrival rate increment could correspond to an increment of gamers
during week-ends.

• Web Servers Utilization :

Figure 4.2.2.1 – Web Server 1 Utilization, Disk 2 have similar behaviour

Figure 4.2.2.1 shows how the increase of 100% of the arrival rate number of Players, causes
and increment of about 10% of the web servers utilization. That’s because these jobs spend
few time in these stations.

- 94 -

22

• Storage Disks Utilization :

Figure 4.2.2.2 – Disk 1 Utilization : Disk 2 and 3 have similar behaviour

Figure 4.2.2.2 shows that the Players arrival rate increment introduce a considerable
disks utilization increment of about 20% that brings the disks utilization near to
saturation.

• Web Server Response Time for Visitors Job Class:

Figure 4.2.2.3 – Web Server 1 Response Time

- 95 -

23

Figure 4.2.2.4 – Web Server 2 Response Time

Figures 4.2.2.3 and 4.2.2.4 show that the response time of a single web server is
increased of about 0.02 second. Because these response times must be understood as
the time a user must wait to download a entire web page, we can conclude that the
Players jobs increment doesn’t negatively affect on waiting time of web pages
download.

• Disks Utilization :

Figure 4.2.2.5 – Disk 2 Utilization, Disk 1 and 3 have similar behaviour

- 96 -

24

Because an high number of Players loop inside system, we have a considerable
increment in disks utilization. With an arrival rate equal to 4 jobs/second we have a
disk utilization close to saturation.

• Finite Capacity Region (FCR) Drop Rate :

Figure 4.2.2.6 – Class Visitors FCR Drop Rate

Figure 4.2.2.7 – Class Players FCR Drop Rate

- 97 -

25

Figure 4.2.2.7 shows that with the increment of the Players arrival rate we also had
an increment in the number of dropped Players jobs. We can notice that when the
arrival rate is equal to 4 jobs/second about half of the incoming jobs are dropped by
FCR.

• System Throughput :

Figure 4.2.2.8 – Class Visitors System Throughput

Figure 4.2.2.9 – Class Players System Throughput

- 98 -

26

Because of the dropping effect of the FCR region we can see in Figures 4.2.2.8 and
4.2.2.9 that System Throughput has always a value lower than the corresponding
arrival rate.

• Global System Response Time :

Figure 4.2.2.10 – Class Players Global Response Time

Figure 4.2.2.11 – Class Visitors Global Response Time

- 99 -

27

The Global System Response Time reduction will be better investigate with the FCR
jobs mix graph (Figure 4.2.2.12) in the section below.

• Visitors/Players Mix in the FCR :

Figure 4.2.2.12 – Jobs Mix in FCR

There are conclusions similar to the first what-if analysis. The Players arrival rate
increment determinates a greater number of Players in the FCR region. Because of
the greater number of Players jobs, Visitors one have an higher probability to being
dropped and so only the faster ones contribute to the Global System Response Time.
Similar considerations could be done for Players jobs.

- 100 -

A Queueing Network Model with a Finite Capacity Region

and Drop Rule

Project for the doctoral course: “Advanced Techniques of

Performance Evaluation of Computer Systems”

Jonatha Anselmi

anselmi@elet.polimi.it

March 26, 2008

1 Introduction

In this case study we evaluate the performance of an open single-class queueing network model with

a finite capacity region and drop rule. Queueing networks with finite capacity regions impose upper

bounds on the number of jobs that can simultaneously reside in a set of stations [3, 4], and can be used

to model application constraints. Such networks more accurately model real systems behavior since

in reality they do have a finite capacity. For instance, consider a web–based multi–level application

having a pool of threads to process HTTP requests. The pool size is chosen in order to either have a

compromise between response time and number of rejected requests and model the finite capacity of

the web server queue. If this upper bound is ever reached, clients will be locked out. The web–based

application can be described with a set of resources modeling the architecture (e.g., web, application

and database servers) with a finite capacity region bounded by the size of the HTTP threads pool.

In general, such constraints make the analysis of finite capacity models more difficult than in the

product-form case, thus, now we solve such networks with simulation.

In Section 2 we discuss the queueing network model under investigation, give notation and model

parameters. The performance evaluation, performed using the JMT simulation engine [2], is shown

in Section 3.

2 The Model

The open queueing network under investigation models the behavior of a web-site. The architecture

is characterized by a web server, an application server and a database server. We assume that the

queueing network is separable [4], i.e. it satisfies the product-form assumptions. However, since in

practise the web-server handles a finite number of connections, we assume that all the servers belong

to a single finite capacity region. The size of the region is implicitely defined in the web-server

settings: the Apache HTTP Server Project [1], for instance, relies on the httpd.conf configuration file

which lets the user bound the maximum number of clients simultaneously handled. The drop rule is

meant to reject requests arriving when the number of requests inside the region has already reached

the maximum capacity allowed.

1- 101 -

Figure 1: The queueing network model with a finite capacity region.

(a) Service times

Station Si

1 (Web) 0.067

2 (Application) 0.050

3 (Database) 0.055

(b) Routing prob. inside the region

pi,j 1 2 3

1 (Web) 0 0.4 0

2 (Application) 0.5 0 0.5

3 (Database) 0 1 0

Table 1: Service time and routing probabilities

2.1 Notation

We denote the mean arrival rate by λ, the region capacity by B, the mean service time at station m

by Sm, the mean number of visit at station m by Vm and the probability that a job is transferred to

station j after completion at station i by pi,j. Loadings Dm are computed as Dm = VmSm (see, i.e.,

[4]). The total number of station is denoted by M . We assume that both service and think times are

exponentially distributed. The performance indices of interest are:

• R(λ): system response time

• Qi(λ): queue lenght of station i

• X(λ): system throughput.

In Figure 1 is depicted the queueing network model under investigation.

2.2 Model Parameters

After a log files analysis, we assume that the network is characterized by the service times and

the routing probabilities shown in Table 1. In-going and out-going probabilities are, respectively,

pin,1 = 1 and p1,out = 0.6.

3 Performance Evaluation

In this section we evaluate the system performance by varying λ and B; we assume that service times

are fixed. In order to better understand the improved accuracy of the model depicted above, we also

make a parallel evaluation considering the network without the finite capacity region.

First, we compute the maximum allowed arrival rate and derive the system stability condition.

Exploiting the values of routing probabilities shown in Table 1 we compute Vi, i = 1, . . . , M and,

2- 102 -

consequently, Di, i = 1, . . . , M . Recal that for an open model the number of visits is given by the

linear system [3]

Vi = pin,i +

M∑

j=0

pj,iVj , i = 1, . . . , M (1)

Substituting numerical values of pi,j in (1), we have

V1 = 1 + 0.5V2

V2 = 0.4V2 + V3

V3 = 0.5V2

(2)

Therefore, we get visits V1 = 1.6, V2 = 1.3, V3 = 0.6 which lead to loadings D1 = 0.04, D2 = 0.083,

D3 = 0.073. The stability condition is verified if

λ <
1

max1≤m≤MDm

=
1

D2

= 12 = λMax job/sec (3)

In our model, since the drop rule forces the number of requests to be less than or equal to B, we are

able to evaluate performance indices also for λ > λMax.

Now we simulate the system using the JModel module of JMT choosing 95% level confidence

intervals. Using the JModel What-If option, we perform a numerical evaluation by varying λ from 2

to 18 job/sec with step 1 and B from 80 to 120 units with step 20. In the following figures, we show

performance indices of interest obtained by both simulation and assuming that the finite capacity

constraint and the drop rule are removed. Recall that in this latter case, formulas for R(λ), X(λ)

and Q(λ) are given by

X(λ) = λ (4)

R(λ) =

3∑

i=1

Di

1 − λDi

. (5)

Q(λ) = X(λ)R(λ) (6)

The former is known as flow balance assumption and the latter as Little’s Law (see, e.g., [4]). As

shown in the following figures, analytic solutions (the red dashed lines) are not given for λ ≥ 12 since

the stability condition is no more verified.

We first consider the case in which B = 80. As shown in Figure 2, the finite capacity region drop

rule does not let the response time grow to infinity. System throughput saturates where the stability

condition is not verified, i.e. for λ ≥ 12 (see Figure 3). However, the important aspect is that when

the stability condition is no more verified, as λ increases, the response time continues to grow and

saturates only when the finite capacity constraint is reached. This is obviously due to the fact that

the number of jobs in the region for λ = 12 (i.e. Q(12)) is still strictly less than B (see Figure 4).

System response time begins to saturate approximately for λ ≃ 14. For λ ≥ 14 we note the

number of customers in the network approaches to the capacity constraint, i.e. Q =
∑M

i=1
Qi ≃ B

(see Figure 4).

We now consider the case in which B = 100 (see Figures 5, 6, 7). Analogously, we note the

response time saturation is reached for λ ≃ 14. In this case, the saturation value is trivially greater

than the previous case since in the region we allow more jobs. As a consequence, increasing the finite

capacity constraint we proportionally increase the response time and drop less jobs1.

We now consider the case in which B = 120. Analogously, we note the response time saturation

is reached for λ ≃ 14 (see Figures 8, 9, 10). Also for this case the previous considerations hold.

In any case we note that when the capacity constraint is active (i.e., the number of requests inside

the region reaches the upper bound B) the system throughput saturates to the same constant value,

1The value of dropped jobs ratio is not available with the current release of JMT (0.6.2)

3- 103 -

2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

Lambda

R
 (

S
y
s
te

m
 R

e
s
p

o
n

s
e

 T
im

e
)

Figure 2: Response time (B=80)

2 4 6 8 10 12 14 16 18
2

3

4

5

6

7

8

9

10

11

12

13

Lambda

X
 (

S
y
s
te

m
 T

h
ro

u
g

h
p

u
t)

Figure 3: Throughput (B=80)

X(λ) = λmax = 12. For λ ≥ λmax, the way in which R(λ) and Q(λ) are related is explained by

(6), i.e. Little’s Law. Thus, keeping fixed X(λ) to λmax, R and Q are directly proportional. In this

scenario, Little’s Law can be used to choose the capacity size which garantees a given response time

(note the different response time saturation values for the three cases).

References

[1] Apache http server project, http://httpd.apache.org/.

[2] Java modelling tools, http://jmt.sourceforge.net.

[3] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi, Queueing Networks and Markov
Chains, Wiley-Interscience, 2005.

[4] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik, Quantitative System
Performance, Prentice-Hall, Englewood Cliffs, New Jersey, 1984.

4- 104 -

2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

Lambda

Q
 (

T
o

ta
l
q

u
e

u
e

 l
e

n
g

h
ts

)

Figure 4: Number of jobs in the region (B=80)

2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

Lambda
R

 (
S

y
s
te

m
 R

e
s
p

o
n

s
e

 T
im

e
)

Figure 5: Response time (B=100)

2 4 6 8 10 12 14 16 18
2

3

4

5

6

7

8

9

10

11

12

13

Lambda

X
 (

S
y
s
te

m
 T

h
ro

u
g

h
p

u
t)

Figure 6: Throughput (B=100)

2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

Lambda

Q
 (

T
o

ta
l
q

u
e

u
e

 l
e

n
g

h
ts

)

Figure 7: Number of jobs in the region (B=100)

5- 105 -

2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

Lambda

R
 (

S
y
s
te

m
 R

e
s
p

o
n

s
e

 T
im

e
)

Figure 8: Response time (B=120)

2 4 6 8 10 12 14 16 18
2

3

4

5

6

7

8

9

10

11

12

13

Lambda
X

 (
S

y
s
te

m
 T

h
ro

u
g

h
p

u
t)

Figure 9: Throughput (B=120)

2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

Lambda

Q
 (

T
o

ta
l
q

u
e

u
e

 l
e

n
g

h
ts

)

Figure 10: Number of jobs in the region (B=120)

6- 106 -

3 – Computer System Architectures

3.1 – Performance Evaluation of Computer Memory Hierarchy 108
3.2 – Shared-Memory Multiprocessor Systems: Hierarchical Task Queue 135

- 107 -

Performance Evaluation of Computer Memory Hierarchy

Anirban Dutta Choudhury
duttacha@alari.ch
Alie El-Din Mady
madya@alari.ch

Advanced Learning and Research Institute

ALaRI - USI
Lugano, Switzerland

Final version

Jan. 27, 2008

- 108 -

mailto:duttacha@alari.ch
mailto:madya@alari.ch

2 CONTENTS

Contents

1 Introduction to Computer Memory Hierarchy 5
1.1 General Purpose Computer Memory Architecture Model 5
1.2 Network-on-Chip Memory Architecture Model 7

2 Modeling Approaches 8
2.1 MATLAB Modeling . 8

2.1.1 Model not considering Hard disk . 9
2.1.2 Model considering Hard disk . 9
2.1.3 Final Cost Function . 10

2.2 Queuing Network Modeling . 10
2.2.1 Introduction . 10
2.2.2 General Purpose Computer Memory Architecture Model 11
2.2.3 Network-on-Chip Memory Architecture Model 20

3 Results 23
3.1 MATLAB Simulation Result . 23

3.1.1 Simulation Not Considering Hard disk 24
3.1.2 Simulation Considering Hard disk . 24
3.1.3 Conclusion . 26

- 109 -

LIST OF FIGURES 3

List of Figures

1.1 General Purpose Computer Architecture Hierarchy 6

2.1 General Purpose Computer Architecture Queuing Network Model 11
2.2 QL of CPU . 12
2.3 QL of L1 . 12
2.4 QL of L2 . 12
2.5 QL of DRAM . 12
2.6 QL of HD . 12
2.7 TP of CPU . 12
2.8 TP of L1 . 13
2.9 TP of L2 . 13
2.10 TP of Dram . 13
2.11 TP of HD . 13
2.12 System Response Time . 13
2.13 QL of DRAM (Normal Distribution) . 13
2.14 QL of HD (Normal Distribution) . 13
2.15 General Purpose Computer Architecture Queuing Network Model (with Fork

& Join) . 14
2.16 General Purpose Computer Architecture Queuing Network Model (NOT

Working !) . 15
2.17 Processor Queue Length . 16
2.18 Processor Queue Time . 16
2.19 Processor Throughput . 16
2.20 L1 Queue Length . 16
2.21 L1 Queue Time . 16
2.22 L1 Throughput . 16
2.23 L2 Queue Length . 17
2.24 L2 Queue Time . 17
2.25 L2 Throughput . 17
2.26 DRAM Queue Length . 17
2.27 DRAM Queue Time . 17
2.28 DRAM Throughput . 17
2.29 System Response Time . 17

- 110 -

4 LIST OF FIGURES

2.30 Processor Queue Length . 18
2.31 Processor Queue Time . 18
2.32 Processor Throughput . 18
2.33 L1 Queue Length . 18
2.34 L1 Queue Time . 18
2.35 L1 Throughput . 18
2.36 L2 Queue Length . 19
2.37 L2 Queue Time . 19
2.38 L2 Throughput . 19
2.39 DRAM Queue Length . 19
2.40 DRAM Queue Time . 19
2.41 DRAM Throughput . 19
2.42 System Response Time . 19
2.43 NoC Queuing Network Model . 20
2.44 NoC QL of CPU1 . 21
2.45 NoC QL of CPU2 . 21
2.46 NoC QL of 1st L1 . 21
2.47 NoC QL of 2nd L1 . 21
2.48 NoC QL of L2 . 21
2.49 NoC QL of DRAM . 21
2.50 NoC QT of CPU1 . 22
2.51 NoC QT of CPU2 . 22
2.52 NoC QL of L1 of CPU1 . 22
2.53 NoC QL of L1 of CPU2 . 22
2.54 NoC QT of L2 . 22
2.55 NoC QT of DRAM . 22
2.56 NoC System Response Time . 22

3.1 Normalized Cost Function . 23
3.2 Cost function NOT Considering Hard disk . 24
3.3 Cost function Considering Hard disk . 25

- 111 -

5

Chapter 1

Introduction to Computer
Memory Hierarchy

1.1 General Purpose Computer Memory Architecture
Model

In most cases, the Computer Memory Hierarchy for General Purpose Computers may be
summarized as given below [5, 6]:

1. CPU Registers: In computer architecture, a processor register is a small amount
of storage available on the CPU whose contents can be accessed more quickly than
storage available elsewhere. Most, but not all, modern computer architectures operate
on the principle of moving data from main memory into registers, operating on them,
then moving the result back into main memory.

2. Level 1 Cache: A CPU cache may be defined as a volatile memory used by the
central processing unit of a computer to reduce the average time to access memory.
The cache is a smaller, faster memory which stores copies of the data from the most
frequently used main memory locations. As long as most memory accesses are to
cached memory locations, the average latency of memory accesses will be closer to
the cache latency than to the latency of main memory. L1 cache is the nearest to the
processor (most of the times on the same chip) and it is also second fastest memory
after the CPU registers.

3. Level 2 Cache: L2 cache is slower and bigger cache.

4. Main Memory (RAM): This is the Random Access Memory and this is the biggest
volatile memory devices, since it loses its data when the power supply is removed.

5. Hard Disk: This is nonvolatile memory or non-volatile storage, the slowest and
biggest in the computer memory hierarchy that can retain the stored information
even when not powered.

- 112 -

6 1.1. GENERAL PURPOSE COMPUTER MEMORY ARCHITECTURE MODEL

Figure 1.1: General Purpose Computer Architecture Hierarchy

We explained the aforementioned memory structure in the figure 1.1. Nowadays, thanks
to top level micro & nano electronics researches and implementation, in general purpose
computers we can see different improvisations, like:

1. A large sized L1 and L2 on-chip cache

- 113 -

1.2. NETWORK-ON-CHIP MEMORY ARCHITECTURE MODEL 7

2. Multi-Processor Personal computers.

1.2 Network-on-Chip Memory Architecture Model

During the last decade, Network on Chip has become a dense area of research in Embedded
Systems Research field. Due to tremendous advancement in VLSI, several functional blocks
in a single chip has become a reality. Network-on-Chip (NoC) is an emerging paradigm for
communications within large VLSI systems implemented on a single silicon chip. In a NoC
system, modules such as processor cores, memories and specialized IP blocks exchange data
using a network as a public transportation sub-system for the information traffic. A NoC is
constructed from multiple point-to-point data links interconnected by switches (or routers),
such that messages can be relayed from any source module to any destination module over
several links, by making routing decisions at the switches.

- 114 -

8

Chapter 2

Modeling Approaches

2.1 MATLAB Modeling

In our mathematical model, we used the miss rates of different memory components as the
input to the system. The output function, also called cost function is a nonlinear function
of all the input parameters. The basic form of cost function in our project is taken from the
CACTI Tool manual [1].

We used a wide range of possible values of miss rates (0.02 to 0.3 in steps of 0.01) in our
project.

Ml1 = (0.02:0.01:0.3); % L1 miss rate
Ml2 = (0.02:0.01:0.3); % L2 miss rate
MD = (0.02:0.01:0.3); % DRAM miss rate

As mentioned below, The standard values of power and time costs are taken from different
research publications [3, 4].

Pl1 = 3; % L1 Power in nJ
Pl2 = 200; % L2 Power in nJ
PD = 3000; % DRAM Power in nJ
PHD = 1500000000; % disk Power in nJ

Tl1 = 2.2; % L1 access Time in ns
Tl2 = 100; % L2 access Time in ns
TD = 2000; % DRAM access Time in ns
THD = 2000000; % disk access Time in ns

Al1 = 2.*exp(3 - (Ml1.*100)); % L1 Area in MB
Al2 = Al1 .* (2.*exp(7)); % L2 Area in MB
AD = Al1 .* (2.*exp(8)); % disk Area in MB

- 115 -

2.1. MATLAB MODELING 9

2.1.1 Model not considering Hard disk

Following is the power and time cost function defined for such systems. These equations
along with other following equations (equations having functions of the parameters Ml1,
Ml2, & MD) are directly influenced by the widely known cache hit-miss formulas [5].

Power Cost =
(Pl1 + Ml1× Pl2 + Ml1×Ml2× PD)

(Pl1 + Pl2 + PD)
(2.1)

where,
Pl1 = Cache Level 1 Power Consumption,
Pl2 = Cache Level 2 Power Consumption,
PD = DRAM Power Consumption,

Time Cost =
(T l1 + Ml1× T l2 + Ml1×Ml2× TD)

(T l1 + T l2 + TD)
(2.2)

where,
Tl1 = Cache Level 1 Time Consumption,
Tl2 = Cache Level 2 Time Consumption,
TD = DRAM Time Consumption,

Following is the Area Cost function used in our project[2]. As shown in the following
equation, all the different components of Area Cost except Hard disk are considered.

Area Cost =
1

Memory Area Efficiency
=

Al1 + Al2 + AD

IPC
(2.3)

where,
Al1 = Cache Level 1 Time Consumption,
Al2 = Cache Level 2 Time Consumption,
AD = DRAM Time Consumption,
IPC = Instruction per Cycle

We derived an empirical formula from the standard results published in research papers
for modeling IPC using miss rate parameters. IPC is defined as:

IPC = (1−Ml1)× 1.45 (2.4)

2.1.2 Model considering Hard disk

Now, we will define the individual components of the aforementioned Cost Function.

Power Cost =
(Pl1 + Ml1 × Pl2 + Ml1×Ml2× PD + Ml1×Ml2×MD × PHD)

(Pl1 + Pl2 + PD + PHD)
(2.5)

- 116 -

10 2.2. QUEUING NETWORK MODELING

where,
Pl1 = Cache Level 1 Power Consumption,
Pl2 = Cache Level 2 Power Consumption,
PD = DRAM Power Consumption,
PHD = Hard disk Power Consumption

Time Cost =
(T l1 + Ml1× T l2 + Ml1×Ml2× TD + Ml1×Ml2×MD × THD)

(T l1 + T l2 + TD + THD)
(2.6)

where,
Tl1 = Cache Level 1 Time Consumption,
Tl2 = Cache Level 2 Time Consumption,
TD = DRAM Time Consumption,
THD = Hard disk Time Consumptio

The Area Cost function in this model is same as defined in the model not considering
Hard disk (vide equation 2.3).

2.1.3 Final Cost Function

In the final cost function, we normalized each component to make sure each of them affects
the final value in a similar way. So the cost function doesn’t have any unit of different
components mentioned earlier (i.e. nJ, ns and MB) and the final cost function is defined as
following:

Cost Function =
Power Cost

Max. Power Cost
+

Time Cost

Max. T ime Cost
+

Area Cost

Max. Area Cost
(2.7)

In our project we considered two models and compared the cost functions. One model
considers the presence of nonvolatile memory(i.e. Hard disk) in the architecture while the
other model doesn’t take into account Hard disk. In the following two sections, we will
represent the different components of the cost functions for both the cases.

2.2 Queuing Network Modeling

2.2.1 Introduction

Queuing Network Modeling Approach is a particularly applicable for the kind of system we
are diskussing. We used a special modeling tool named JMT version 0.7.3 developed in
Politechnico the Milano [8]. The Java Modeling Tools (JMT) is a free open source suite
for performance evaluation, capacity planning and modeling of computer and communi-
cation systems. The suite implements numerous state-of-the-art algorithms for the exact,
asymptotic and simulative analysis of queueing network models, either with or without
product-form solution.

- 117 -

2.2. QUEUING NETWORK MODELING 11

2.2.2 General Purpose Computer Memory Architecture Model

Here, we started with the model in 2.1. In this model, the miss rates (constant) are :
Ml1 = 0.05
Ml2 = 0.05
MD = 0.1

The model is a closed model with instruction buffer queue length = 8.

Figure 2.1: General Purpose Computer Architecture Queuing Network Model

- 118 -

12 2.2. QUEUING NETWORK MODELING

Result

Figure 2.2: QL of CPU Figure 2.3: QL of L1

Figure 2.4: QL of L2 Figure 2.5: QL of DRAM

Figure 2.6: QL of HD Figure 2.7: TP of CPU

To reflect the variations of the nature of the big (and slow) memory components (e.g.
Hard disk), we also checked the same model with Hard disk having a normal distribution
with a mean value 2× 104 ns (same as the previous model) and a standard deviation of 100
ns (refer to figure 2.13 and 2.14).

- 119 -

2.2. QUEUING NETWORK MODELING 13

Figure 2.8: TP of L1 Figure 2.9: TP of L2

Figure 2.10: TP of Dram Figure 2.11: TP of HD

Figure 2.12: System Response Time

Figure 2.13: QL of DRAM (Normal
Distribution)

Figure 2.14: QL of HD (Normal Dis-
tribution)

- 120 -

14 2.2. QUEUING NETWORK MODELING

In this part of the implementation, we are modeling General Purpose Computers with
only one processor and consequent memory structure dedicated to that processor. As shown
in the figure 2.15, this system is explained as following. If there is a hit after a cache or other
memory search, the value goes back to CPU and L1 cache values are updated (Fork 0 and
Fork 1). In case of a miss, the search proceeds to the next level of memory. Processor and
L1 cache have more than one inputs. And we use joins (Join 0 and Join 1) to constrain the
exponential increment of the number of tokens in the system.Otherwise, it would become
an unstable system with 2 forks increasing the number of jobs exponentially.

Figure 2.15: General Purpose Computer Architecture Queuing Network Model (with Fork
& Join)

Here when we tried to run the system with instruction buffer length = 8, the JMT result
window was blank (figure 2.16).

The initial number of instructions (number of jobs in the model) was 10000. The model
was run with 2 different set of parameters, namely:

1. Modeling with High Miss Rate: L1 miss rate = 0.1, L2 miss rate = 0.05 and
DRAM miss rate = 0.01.

2. Modeling with Low Miss Rate: L1 miss rate = 0.05, L2 miss rate = 0.005 and
DRAM miss rate = 0.001.

- 121 -

2.2. QUEUING NETWORK MODELING 15

Figure 2.16: General Purpose Computer Architecture Queuing Network Model (NOT Work-
ing !)

- 122 -

16 2.2. QUEUING NETWORK MODELING

Result (with N = 10000)

1. Low Miss Rate

Figure 2.17: Processor Queue
Length

Figure 2.18: Processor Queue Time

Figure 2.19: Processor Throughput Figure 2.20: L1 Queue Length

Figure 2.21: L1 Queue Time Figure 2.22: L1 Throughput

- 123 -

2.2. QUEUING NETWORK MODELING 17

Figure 2.23: L2 Queue Length Figure 2.24: L2 Queue Time

Figure 2.25: L2 Throughput Figure 2.26: DRAM Queue Length

Figure 2.27: DRAM Queue Time Figure 2.28: DRAM Throughput

Figure 2.29: System Response Time

- 124 -

18 2.2. QUEUING NETWORK MODELING

2. High Miss Rate

Figure 2.30: Processor Queue
Length

Figure 2.31: Processor Queue Time

Figure 2.32: Processor Throughput Figure 2.33: L1 Queue Length

Figure 2.34: L1 Queue Time Figure 2.35: L1 Throughput

- 125 -

2.2. QUEUING NETWORK MODELING 19

Figure 2.36: L2 Queue Length Figure 2.37: L2 Queue Time

Figure 2.38: L2 Throughput Figure 2.39: DRAM Queue Length

Figure 2.40: DRAM Queue Time Figure 2.41: DRAM Throughput

Figure 2.42: System Response Time

- 126 -

20 2.2. QUEUING NETWORK MODELING

2.2.3 Network-on-Chip Memory Architecture Model

In the Network-on-Chip Architecture environment, the systems have typically several re-
sources for the same job(like more than one processor in a single system). As shown in 2.43,
we have two processors having dedicated L1 cache memory but sharing L2 cache and main
memory. This is an open source model with 2 sources (CP schedulers) and one sink (jobs
reaching this point are served, in other words the memory execution is finished).

Figure 2.43: NoC Queuing Network Model

- 127 -

2.2. QUEUING NETWORK MODELING 21

In NoC architecture, we used the following parameters - L1 miss rate = 0.05 and L2
miss rate = 0.3.

Result : NoC

Figure 2.44: NoC QL of CPU1 Figure 2.45: NoC QL of CPU2

Figure 2.46: NoC QL of 1st L1 Figure 2.47: NoC QL of 2nd L1

Figure 2.48: NoC QL of L2 Figure 2.49: NoC QL of DRAM

- 128 -

22 2.2. QUEUING NETWORK MODELING

Figure 2.50: NoC QT of CPU1 Figure 2.51: NoC QT of CPU2

Figure 2.52: NoC QL of L1 of CPU1 Figure 2.53: NoC QL of L1 of CPU2

Figure 2.54: NoC QT of L2 Figure 2.55: NoC QT of DRAM

Figure 2.56: NoC System Response
Time

- 129 -

23

Chapter 3

Results

3.1 MATLAB Simulation Result

As shown in chapter 2.7, all the individual components of the final cost function are nor-
malized before adding up. In figure 3.1, we can see the variation of each component over a
set of design space points of Ml1, Ml2, MD and MHD. And then in the 4th segment of 3.1,
we can see the normalized components added up to generate the Final Cost Function.

Figure 3.1: Normalized Cost Function

- 130 -

24 3.1. MATLAB SIMULATION RESULT

3.1.1 Simulation Not Considering Hard disk

Here in 3.2 we can see the results of MATLAB simulation not considering Hard disk in the
system. The color of the graph changes with the height of the 3-D plane. As expected from
the basic equations diskussed, Power and Time cost functions are increasing with L1 and
L2 miss rate. On the other hand, Area cost function is decreasing abruptly with increasing
miss rates. The Final Cost Function reflects the nature of all the graphs. The design points
with the lowest heights are the optimum combination for our system.

Figure 3.2: Cost function NOT Considering Hard disk

3.1.2 Simulation Considering Hard disk

In 3.3, we have 4 dimensions, namely Ml1, Ml2, MD and MHD. So we have drawn slices
along axes of the miss rates to show the Final Cost Function. The red end of the colors
shown in the graph have a higher value of final cost function, while the black end of the
spectrum have a low final cost function value. The intensity of the color changes with the
value. The trade off is clear as the lighter region in Area Cost Graph is just opposite of
Power and Time cost graph.

As a result, we can say the most optimum points are somewhere middle in the 3-D region
(Neither in the extreme left as in Power/Time Cost graph, nor in the extreme right as in
Area Cost graph).

- 131 -

3.1. MATLAB SIMULATION RESULT 25

Figure 3.3: Cost function Considering Hard disk

- 132 -

26 3.1. MATLAB SIMULATION RESULT

3.1.3 Conclusion

The findings and explanations from this queuing network model is given below:

1. In General Purpose Computer Memory Architecture,

(a) In low miss rate systems, the CPU queue length and time is staying a bit in the
maximum value and then coming back. While in the hight miss rate system there
is a sharp maximum point and then the curve is coming down with a steep slope.
This can be explained as following. The low miss rate system have hit hit rates.
As a result the jobs are driven to CPU more fast and the system is holding the
maximum value for a longer time.

(b) In our system, the level 1 cache in considered on-chip and as fast as CPU, so as
expected, the L1 queue time is constant at 0, as there will no queue formed at
all. Following the same logic, L1 throughput is also 1 all the time.

(c) L2 and DRAM having a an exponentially large service time, the queue time and
queue length of both the severs are going up.

2. In Network-on-Chip Memory Architecture,

(a) In NoC, there are L1 cache dedicated to 2 processors. In both of them, the queue
length is stable around 2.

(b) One very important observation is that DRAM is not following any specific pat-
tern. This is because in our simulation, L2 is modeled with a high miss rate. So a
good percent of jobs (which are again mixed bunch of jobs) are reaching DRAM.
And while DRAM is working on that some miss happens in L2 and that again
makes an increment of the queue length of DRAM.

(c) System Response Time is having a stable value initially, but then it goes up
reflecting the queues in L1,L2 and DRAM. And when the queue lengths of dif-
ferent components becomes stable, the System Response Time decrease again to
a stable value.

- 133 -

BIBLIOGRAPHY 27

Bibliography

[1] Premkishore Shivakumar and Norman P. Jouppi , “CACTI 3.0: An Integrated
Cache Timing, Power, and Area Model”

[2] J. Huh, D. Burger, Stephen W. Keckler, “Maximizing Area Efficiency for Single-
Chip Server Processors”

[3] Smail MAR, Samy MEFTALI, Jean-Luc DEKEYSER, “Power Consumption
Awareness in CacheMemory Design with SystemC,”.The 16th International Con-
ference on Microelectronics, 2004. ICM 2004 Proceedings.

[4] Giovanni De Micheli, Yung-Hsiang L, “Adaptive Hard Disk Power Management on
Personal Computers,” IEEE Great Lakes Symposium on VLSI, 1999

[5] John L. Hennessy, David A. Patterson, “Computer Architecture: A Quantitative
Approach, Third Edition,” The Morgan Kaufmann Series in Computer Architecture
and Design

[6] www.wikipedia.org

[7] ALaRI Classnote, Prof. G. Serazzi

[8] JMT 0.7.3 Manual

- 134 -

UNIVERSITY OF LUGANO

Advanced Learning and Research Institute -ALaRI

PROJECT

COURSE: PERFORMANCE EVALUATION

Shared-Memory Multiprocessor Systems –

Hierarchical Task Queue

Mentor: Giuseppe Serazzi

Candidates:
Ana Jankovic, MAS Elena Zamsha, MAS Ghazal Haghani, MSc 2nd

jankovia@alari.ch zamshae@alari.ch haghanig@alari.ch

Lugano, February 2007.

- 135 -

 2

CONTENTS

1. Description of the system ... 4

2. Introduction .. 5

3. Propose of the new technique .. 5

4. The modelling approach ... 6

4.1. Java Modelling Tools..6

4.2. Input parameters..7

4.3. Performance analysis ..7

5. Simulations... 8

5.1. Impact of access contention ..9

5.1.1. Centralized organization ..9

5.1.2. Distributed organization...10

5.1.3. Hierarchical organization...10

5.2. Impact of system size..11

5.2.1. Centralized organization ..11

5.2.2. Distributed organization...11

5.2.3. Hierarchical organization...12

6. Results & Conclusions... 13

7. REFERENCES:... 14

- 136 -

 3

LIST OF FIGURES

Figure 1 Shared-memory multiprocessors system...4

Figure 2 Hierarchical organization for N=8 processors with branching factor B=25

Figure 3 Task transfer process in the hierarchical organization for N=64 processors with branching

factor B=4 and transfer factor Tr=1 ...6

Figure 4 Centralized organization with N=4 sinks ..8

Figure 5 Distributed organization with N=4 sinks...8

Figure 6 Hierarchical organization with N=4 sinks, Br=2, Tr=1...9

Figure 7 Centralized, what-if analysis, N=4 sinks ...9

Figure 8 Distributed, simple analysis, N=4 sinks ..10

Figure 9 Hierarchical, simple analysis, N=4 sinks ..10

Figure 10 Centralized, what-if analysis, N=8 sinks ...11

Figure 11 Distributed, simple analysis, N=8 sinks ..11

Figure 12 Hierarchical organization with N=8 sinks, Br=2, Tr=1...12

Figure 13 Hierarchical, simple analysis, N=8 sinks ..12

- 137 -

 4

1. Description of the system

Shared-memory multiprocessors are an important class of parallel processing systems.

Shared memory is a large block of Random Access Memory (RAM) which can be accessed
by several different Central Processing Units (CPUs) in a multiple-processor computer system.
Processors can access one or more shared memory modules. A shared memory system is relatively
easy to program since all processors share a single view of data and the communication between
processors can be as fast as memory accesses to a same location. The processors can be physically
connected to the memory modules in a variety of ways, but logically every processor is connected
to every module. Figure 1 presents basic concept of shared-memory multiprocessors system.

Processor scheduling is an important factor that influences the overall system performance

and has received considerable attention from several researchers. On the other hand, sharing-
memory multiprocessors system will cause some problems. The first issue is to decide how to
dedicate memory between processors to obtain best performances of the system which can be
represented by measuring its response time and utilization.

Figure 1 Shared-memory multiprocessors system

Several commercial and research shared-memory machines have been developed including
BBN’s Butterfly, NYU’s Ultracomputer, IBM’s RP3, Sequent’s Balance and Symmetry, DEC’s
Firefly, and the Stanford Dash.

- 138 -

 5

0

1

2

3

4

5

6

7

Q1

Q2

Q3

Q4

Q5

Q6

Q7

2. Introduction

Waiting ready tasks in shared-memory multiprocessors (the main topic of this course work)

can be organized in two basic ways – centralized or distributed.

In the centralized organization there is a single global queue of ready tasks that is
accessible to all processors in the system. However, due to mutually exclusive access, the single
global task ready queue becomes the system bottleneck as the number of processors increases, so it
seams that centralized organization is not suitable for large parallel systems.

In the distributed organization, on the other hand, local ready queues are associated with

the processors; this avoids the problem of ready queue access contention but introduces additional
problems. The main problem with this organization is to find an appropriate ready task queue for
the arrival task (the task assignment problem). A simple random assignment strategy, in which an
arriving task is simply assigned to a random ready task queue, causes load imbalance resulting in
performance degradation. In the absence of ready task queue access contention, the centralized
organization provides better performance mainly due to its load sharing characteristic.

3. Propose of the new technique

The goal is to present a superior technique – hierarchical organization, which provides
performance similar to the centralized organization even when there is no access contention like in
the distributed organization. In this new organization (example is shown in Figure 2), a set of ready
task queues is organized as a tree with all the processors with their local queues attached to the
bottom level of the tree (as leaf nodes).

Figure 2 Hierarchical organization for N=8 processors with branching factor B=2

Each ready queue can be viewed as a ready queue in the centralized organization serving
only the tree nodes directly below it; these nodes can themselves be ready queues or processors
local queues. All incoming tasks are added to the root task queue. If L is the leaf node level, when
processor is looking for work, it first checks its associated task queue at level (L-1). If that queue is
empty it checks the parent node of this node at level (L-2) and the process is repeated up the tree
until it finds a task to be scheduled (unless the root queue is empty).

- 139 -

 6

1 2 43

Q0

Q1

Q2

84

12

3

16

4

1

In order to reduce access contention at higher levels, when a task queue is accessed, a set of
tasks is moved one level down the tree – the size of set decreases progressively (at the bottom of the
tree it is reduced just to one task). Parameter Tr is transfer factor which indicates the number of
tasks transferred from a parent queue to its child queue.

Figure 3 Task transfer process in the hierarchical organization for N=64 processors with
branching factor B=4 and transfer factor Tr=1

Hierarchical organization avoids ready queue bottleneck because both the branching and

transfer factors can be adjusted. It can also be seen that the set of task queues that form the tree can
all be distributed to different memory modules so that concurrent access can be permitted (provided
the interconnection network allows the particular permutation).

4. The modelling approach

 In the following course work will be presented and analyzed performances of three different
organizations for the shared-memory multiprocessor systems, mentioned upper.

4.1. Java Modelling Tools

JMT Simulator, also called as JSIM, is simulation module of the Java Modelling Tools
(JMT), an open-source fully-portable Java suite for performance evaluation, capacity planning and
modelling of computer and communication systems. The suite implements numerous state-of-the-
art algorithms for the exact, asymptotic and simulative analysis of queuing network models. JSIM is
a discrete-event simulator for the analysis of queuing network models. An intuitive sequence of
wizard windows helps specifying network properties. The simulation engine supports several
probability distributions for characterizing service and inter-arrival times. Load-dependent
strategies using arbitrary functions of the current queue-length can be specified. JSIM supports
state-independent routing strategies, e.g., Markovian or round robin, as well as state-dependent
strategies, e.g., routing to the server with minimum utilization, or with the shortest response time, or
with minimum queue-length. The simulation engine supports several extended features not allowed
in product-form models, namely, finite capacity regions (i.e., blocking), fork-join servers, and
priority classes. The analysis of simulation results employs on-line transient detection techniques
based on spectral analysis. What-if analyses, where a sequence of simulations is run for different
values of parameters, are also possible.

- 140 -

 7

4.2. Input parameters

 We will consider a parallel system with N identical processors and model this system with
an abstraction consisting of a set of queues and N sinks. For most results reported in this course
work, we fixed N on 4 or 8 (partly because of the time needed to run simulation experiments and
partly because many commercial multiprocessor systems use similar number of processors).
Concentration is on the scheduling aspect of the system.

Generation of the jobs is a common feature among this three task queue organizations.
However, contention for the task queue varies depending on the task queue organization. We will
consider a simple fork type of job structure, assumed to be composed of a set of independent tasks
that can be run on system concurrently. The job completes when all of its component tasks are
completed. Tasks within the job do not communicate with each other. The job arrival process is
assumed to be exponentially distributed with parameter λ = 0.75, and for what-if analysis we used
range [0.75, 1.50]. Tasks are characterized by processor service demand with mean 1/μ, and μ = 1.

We model the amount of time needed to access (not including the waiting time to get

exclusive access to the ready queue) the ready queue as a fraction f of the average task execution
time. We further assume that each time an idle processor accesses a ready queue it spends a
constant amount of time (i.e., f / μ) independent of the actual number of entries in the ready queue
i.e., ready queue access time is deterministic. This is true for simple scheduling algorithms such as
the first-come-first-served (FCFS) where it simply involves removing the task at the head of the
queue. Fraction f=10% causes the increasing of the service time, which we model with constant
distribution with coefficient 1.1.

We determine our models also as FCFS, and load independent. Routing of tasks in the
system is chosen to be random. Queue length is finite and fixed on 20, and described models use
waiting queue, without dropping the tasks.

Model is described as one-open-class system, which means that we will have only one class

of the tasks arriving randomly into our system.

4.3. Performance analysis

 To compare these three different organizations, we decided to make analysis over two
important output parameters – Response time and Utilization, presenting the results in two
sections:

• impact of access contention, and
• impact of system size.

 Response time means average time spent by job before leaving the centre (queuing + in
service). Utilization means average number of jobs in service.

Impact of access contention will be analysed and the results will be presented with the
diagram describing the impact of the ready queue access time as a function of utilization. The
analysis for the centralized organization will be done by varying the parameter λ implementing this
in what-if analysis, and for the other two organizations, we will fix this parameter on 0.75,
expecting the best result.

- 141 -

 8

Impact of system size, will be analysed with the double size of the processors (N=8), so we

will compare results for N=4 and N=8 processors in all three distributions. Results will be also
presented with the diagrams describing job response time and utilization when the average task
service time is doubled.

5. Simulations

First step is to build three different models for centralized, distributed and hierarchical
organization in JSIM tool. They are presented in Figures 4, 5 and 6, respectively.

Figure 4 Centralized organization with N=4 sinks

Figure 5 Distributed organization with N=4 sinks

- 142 -

 9

Figure 6 Hierarchical organization with N=4 sinks, Br=2, Tr=1

Second step is to give to all used blocks (source, servers and forks) needed values for the
job arrival distribution parameters (exponential: λ = 0.75), queue lengths (20 tasks), service
time distribution parameters (constant: c=1.1) and simulation time (6 seconds).

5.1. Impact of access contention

5.1.1. Centralized organization

For the centralized model we used what-if analysis choosing the Arrival time as the
relevant parameter with λ in the range of [0.75,1.5] tasks/second (exponential distribution of the
jobs). In this range we run simulations in four steps. Area of interest was to analyze response of the
system from 4 to 8 tasks, regarding the number of sinks at the output of the model, because it was
interesting to watch the performance for the same, or double number of tasks comparing how much
we have sinks in the model (N=4).

Figure 7 Centralized, what-if analysis, N=4 sinks

- 143 -

 10

5.1.2. Distributed organization

 For the distributed model we used simple analysis and simulated the model. Duration of the
simulation was also 6 seconds. In Figure 8 on the left side is represented Response time, and on the
right side is Utilization.

Figure 8 Distributed, simple analysis, N=4 sinks

5.1.3. Hierarchical organization

 For the hierarchical model we used simple analysis and simulated the model. Duration of the
simulation was 4 seconds long. We wanted to see how will model work for the similar number of
the tasks, as sinks we have at the output; 4sec / (0.75tasks/sec) = 5.3 tasks. In Figure 9 on the left
side is represented Response time, and on the right side is Utilization.

Figure 9 Hierarchical, simple analysis, N=4 sinks

- 144 -

 11

5.2. Impact of system size

5.2.1. Centralized organization

 For the centralized model with N=8 sinks at the output of the model, we used again what-if
analysis choosing the Arrival time as the relevant parameter with λ in the range of [0.75,1.5]
tasks/second, and run simulations in four steps. Area of interest was to analyze response of the
system from 4 to 8 tasks, regarding the number of sinks at the output of the model, because now it
was interesting to watch the performance for the half or the same number of tasks comparing how
much we have sinks in the model (N=8).

Figure 10 Centralized, what-if analysis, N=8 sinks

5.2.2. Distributed organization

 For the distributed model with N=8 sinks at the output we used simple analysis and
simulated the model. Duration of the simulation was 6 seconds, regarding the number of the tasks in
the system, because we wanted to have the same number of tasks as sinks at the output; 6sec /
(0.75tasks/sec) = 8 tasks (N=8). In Figure 11 on the left side is represented Response time, and on
the right side is Utilization.

Figure 11 Distributed, simple analysis, N=8 sinks

- 145 -

 12

5.2.3. Hierarchical organization

 In Figure 12 is presented model of the hierarchical distribution with N=8 sinks. On this
picture it is also possible to see the work-sheet of the JSIM tool.

Figure 12 Hierarchical organization with N=8 sinks, Br=2, Tr=1

For this analysis we have chosen again simple analysis, 12 seconds long, because we wanted
to compare how will this model work with double number of the tasks, comparing with the number
of sinks in the model; 12sec / (0.75tasks/sec) = 16 tasks, that means 2*N. In Figure 13 on the left
side is represented Response time, and on the right side is Utilization.

Figure 13 Hierarchical, simple analysis, N=8 sinks

- 146 -

 13

6. Results & Conclusions

Comparing three different techniques for modelling waiting ready tasks in shared-memory
multiprocessors, which were described, analyzed and simulated in this course work, we can
conclude that centralized organization showed very good results for small number of processors.
Response time was growing rapidly and utilization reached value of 1 in the short period. In
organizing ready tasks, we can say that centralized task queue organization is preferred in the
absence of access contention. However, the major drawback is that the central task queue becomes
a bottleneck for large system sizes and therefore it is not suitable for large parallel systems or fine
granularity task scheduling.

Introducing more processors in the system, centralized model was not good representative

anymore, the utilization couldn’t reach value of 1 in provided range for job arrival distribution, but
on the other hand, distributed organization brought better results. With distributed organization we
eliminated the task queue bottleneck disadvantage of the centralized organization by associating a
local task queue for each processor. A main disadvantage of this organization is that there may be a
load imbalance in the sense that some task queues may be empty while there are tasks waiting to be
scheduled in other queues.

In the moment of making last simulations, and providing detailed performance analysis, we

could conclude, finally, that in the both situations, with small and doubled number of processors (in
the case of the JSIM model – sinks), hierarchical approach is the best choice. For N = 4 sinks at
the output of the presented system, hierarchical model was good enough like the centralized,
providing similar performances while eliminating the ready queue bottleneck. The properly
designed hierarchical organization inherits the load sharing property of the centralized organization,
while distributing the task queues as in the distributed organization. Mainly due to its load sharing
property, the hierarchical organization exhibits less sensitivity to task service time variance like
centralized organization in absence of access contention.

On the other hand, for N = 8 sinks hierarchical model was giving the best performances,

even comparing with the distributed model. The results showed that both, hierarchical and
distributed, organizations scale nicely for all system utilizations without creating system
bottlenecks, but hierarchical approach retains its performance advantage over distributed one.

This new approach, hierarchical organization, presented in our course work, has also good

characteristics in the case of larger number of the incoming jobs (or tasks) in the system, comparing
with the number of the processors (in fact sinks) in the model.

Queue problems are optimized very well - implementing hierarchical organisation for

modelling waiting ready tasks in shared-memory multiprocessors, problem of ready queue access
contention and load imbalance problem now became negligible.

- 147 -

 14

7. REFERENCES:

[1] E. Lazowska, J. Zahorjan, Quantitative System Performance - Computer System Analysis Using

Queuing Network Models, Prentice-Hall, Inc., New Jersey
[2] S. Dandamudi, P. Cheng, A Hierarchical Task Queue Organization for Shared-Memory

Multiprocessor Systems, IEEE transactions and distributed systems, vol. 6, No 1, January 1995
[3] B. Nitzberg, V. Lo, Distributed Shared Memory: A Survey of Issues and Algorithms, University

of Oregon, Oregon
[4] B. Sinclair, Analysis of Shared Memory Multiprocessors, Version 2.3, United States, Jun 2005
[5] M. Bertoli, G. Casale, G. Serazzi, The JMT Simulator for Performance Evaluation of Non-

Product-Form Queuing Networks, Politecnico di Milano, Italy
[6] Tutored by G. Serazzi, Java Modelling Tools, users manual, Version 0.3, Performance

Evaluation Lab, Politecnico di Milano, Italy, June 2006
[7] Tutored by G. Serazzi ,Java Modelling Tools, system manual, Version 0.1, Performance

Evaluation Lab, Politecnico di Milano, Italy, June 2006

- 148 -

4 – Multimedia

4.1 – Modelling a Surveillance System . 150
4.2 – Performance Evaluation Report on VoIP Gateway Systems 161

- 149 -

POLITECNICO DI MILANO

DIPARTIMENTO DI ELETTRONICA E INFORMAZIONE

MODELING OF A SURVEILLANCE SYSTEM
USING JMT ENVIRONMENT

LUCA BERTOSSI

LAURA FRIGERIO

October 25, 2006

Doctoral course on Advanced Topics of Performance

Evaluation

Tutor: Prof. G. Serazzi

- 150 -

1 Problem de�nition

Aim of the work is to describe a surveillance system composed of several video-
cameras and service stations. System should monitor some critical points of a
city, in order to identify possible dangerous situations.

Each critical point is equipped with videocameras and a local service station
that could analyze data coming from videocameras and transmit results to a
central DB server. Videocameras are triggered each time a motion is detected in
their �eld of sight and record a stream of 5-seconds length. Streams are encoded
in MPEG and transmitted to the local service station that decompresses the
video and analyzes the sequence. Results of the analysis are sent with the
compressed video to a central DB server. The local service stations have a
limited amount of space to queue data streams coming from videocameras.

Five city critical points are examined: Dome area, Central Station area, Uni-
versity area, Airport area and Stadium area. Several videocameras are placed
in each area and classi�ed according to the average number of motions detected
in a time interval.

Videocameras that monitor crowded areas usually produce more complex
streams requiring more time to be analyzed by the local service stations. For
each area three videocameras groups are considered: those which monitor a
crowded space, those which monitor a quite crowded one and those which mon-
itor a slightly crowded one.

2 Numerical data

Average times between the sending of two data streams from a group of video-
cameras to the local service stations are classi�ed in table 1. Average times are
tabled with reference to the area and to the videocamera class.

Dome Station University Airport Stadium

Crowded 18 21 17 15 20
Quite Crowded 35 37 30 28 30
Slightly Crowded 100 80 110 75 75

Table 1: Average times between the sending of two data streams (in seconds)

The elaboration time at the local service station is composed of two parts:
the time for the MPEG decompression and the time for the image analysis. As
explained before the elaboration time is dependent on the videocamera class.
Table 2 shows the average times. There are light di�erences according to the
hardware installed at each station.

The number of streams that could be stored in each local service station are
limited. Their values are shown in table 3.

Service time at the DB service station is similar for all requests, with an
average value of 2 seconds. The Central DB is composed of two servers.

2

- 151 -

Dome Station University Airport Stadium

Crowded 13 13 8 13 10
Quite Crowded 8 8 7 8 7
Slightly Crowded 5.5 5.5 5.2 5.5 5.2

Table 2: Times of elaboration at local service station (in seconds)

Number of

Data Streams

Dome 500
Station 300

University 200
Airport 400
Stadium 600

Table 3: Local service station capacity

3 Model de�nition with JMT

The JModel Tool can be used to model the described situation. A tree structure
can be identi�ed: 5 local service stations collect requests and then transmit them
to the Central DB Server.

Focusing the attention on a local service station we can see that it collects
data from several videocameras grouped into 3 classes. Each class has its own
average time between the sending of two data streams and its own average elab-
oration time. Therefore we can model this behaviour considering a local source
composed of three classes that sends request to the local service station. As no
other information except time between two data streams is available, we can
model the situation with an exponential distribution with medium interarrival
time equal to the time between the sending of two data streams.

Each service station can be modeled as a server that can store only a �nite
number of data streams. To model this situation we insert a �nite capacity
region for the local service station. Each stream that causes the queue to exceed
the local capacity is dropped. Server services each class with a di�erent mean
time. Also in this case an exponential distribution is used.

These considerations could be extended to every local service station. Mean
values used for the exponential distributions of requests and server elaborations
are inserted according to tables 1 and 2. Server capacities are those shown in
table 3.

Finally a Central DB Server is included to collect all the requests coming
from the Local Service Stations. The Central DB Server has a service time
described with an exponential distribution with a mean value equal to 2 seconds.

Figure 1 shows the graphical representation of the model.

3

- 152 -

Station

Stadium

Airport

University Sink

Dome Dome's Server

Station's Server

University's Server

Stadium's Server

Airport's Server

Central DB Server

Figure 1: JModel System Model graph

4

- 153 -

0 1 2 3 4 5 6 7 8 9 10
50

100

150

200

250

300

350

400

Airport’s Server Queue Length

Figure 2: Airport Server Queue length

4 Model analysis

In order to understand the model behaviour we investigate some simulation
results. Queue length, Response time, Utilization and Throughput are examined
for each local service station. Data for all stations are available from the software
model. In the following sections we report results for some of the stations.

4.1 Queue length

Figures 2, 3 and 4 show queue dimensions for three local service stations (Air-
port, Stadium, DB). As it can be noticed, queue lengths for Stadium and DB
servers are quite limited (maximum 5 requests queued) while the Airport server
queue is near to its upper bound, i.e. 400 requests. This e�ect is due to the ser-
vice time at the local station. Indeed, while average time between two requests
is similar for both servers (ref. Table 1), service time for the Airport Server is
greater (reg. Table 2). Very small di�erences of this values impact greatly on
queue length.

4.2 Response Time

Figures 5, 6 and 7 show response time for three local service stations (Airport,
Stadium, DB). Also in this case it can be noticed that response times for Stadium
and DB servers are quite limited (maximum 55 seconds) while the Airport server
response time is very high. This e�ect is due to the queue saturation that
impacts on the average time for the request to be dispatched.

5

- 154 -

0 5 10 15 20 25 30 35
2.5

3

3.5

4

4.5

5

5.5

6

Stadium’s Server Queue Length

Figure 3: Stadium Server Queue length

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Central DB Server Queue Length

Figure 4: DB Central Server Queue length

6

- 155 -

0 5 10 15 20 25 30 35 40 45
500

1000

1500

2000

2500

3000

3500

4000

4500

Airport’s Server Response Time

Figure 5: Airport Server Response Time

0 5 10 15 20 25 30
25

30

35

40

45

50

55

60

Stadium’s Server Response Time

Figure 6: Stadium Server Response Time

7

- 156 -

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

2.7

2.75

Central DB Server Response Time

Figure 7: DB Server Response Time

Dome Station University Airport Stadium

Sum of arrival rates 0.095 0.087 0.101 0.116 0.096
Average Throughput 0.095 0.092 0.100 0.096 0.101

Table 4: Comparison between arrival rate and throughput

4.3 Utilization

Utilization results show how the resources are exploited. As it can be guessed,
the airport server station is always busy. For this reason it cannot dispatch all
requests, leading the queue length to its maximum value and the response time
to high values, as shown in the previous sections. Figure 8 shows the trend of
the Utilization for the Airport server compared with the mean values of Stadium
and DB Server.

4.4 Throughput

Throughputs of Airport, Stadium and DB servers are plotted in �gure 9. We
can compare the throughput to the arrival rate in order to understand the
behaviour of the system. Summing up lambdas of the exponential distributions
for the three source classes of a server (

∑3
i=0 λi) and comparing this value with

the medium throughput resulting from simulations, we should obtain similar
values to be in equilibrium; results are shown in table 4.

We can notice that sum of lambda and average throughput are similar for
the most of servers. Therefore at the equilibrium all requests are dispatched.

8

- 157 -

0 1 2 3 4 5 6 7 8 9 10
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Server utilization comparison

Airport
Stadium
DB

Figure 8: Comparison of the utilization of Airport server with the mean values
of stadium and DB servers

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Throughput

Airport
Stadium
DB

Figure 9: Throughput comparison

9

- 158 -

Dome Station University Airport Stadium

Crowded 13 13 8 9 10
Quite Crowded 8 8 7 7 7
Slightly Crowded 5.5 5.5 5.2 5.2 5.2

Table 5: Updated times of elaboration at local service station (in seconds)

0 10 20 30 40 50 60 70
6

7

8

9

10

11

12

13

14

15

Airport’s Server Queue Length

Figure 10: Updated Airport Server Queue Lenght

For the Airport server, we can notice that the �rst value is greater than the
second. In this case the server saturates and some requests are dropped as they
overcame queue capacity.

5 Model modi�cation

As shown in the previous section, the Airport Server, could not manage all re-
ceived requests. In order to improve the system performance we slightly changed
service response times of the airport server. This corresponds to a hypothetical
upgrade of the server hardware. In table 5 updated values are reported.

With this new con�guration the server is able to manage all requests. We
obtain an average Utilization of 0.931 and an average Throughput of 0.1085.
Figure 10 and 11 shows the improvement obtained for queue length and response
time.

10

- 159 -

0 10 20 30 40 50 60 70 80
50

60

70

80

90

100

110

Airport’s Server Response Time

Figure 11: Updated Airport Server Response Time

A Support Matlab functions for graphics gener-

ation

JMT deal with data structures building a XML �le that de�nes the model archi-
tecture, the parameters and the simulation results. In order to easily manage
results obtained from simulations we developed a set of Matlab functions to
extract values from the XML �le with jmodel extension. Functions are based
on GPL XMLTree toolbox freely downloadable from Matlab center site.

Three functions have been developed:

• JMTDraw: it plots and/or save to �le simulation results.

• JMTRead: it reads simulations results and plot them using JMTDraw
function

• JMTLoad: it loads from jmodel �le simulations results and creates a
Matlab structure array to store data

Functions are provided with the source code and are fully commented.

11

- 160 -

PERFORMANCE EVALUATION REPORT ON
VoIP GATEWAY SYSTEMS

Submitted on 05, February, 2005

Presented To: Presented By:

Prof.Giuseppe Serazzi Dorosh Oleksander
Dipartimento di Elettronica e Informazione Kaveripakam Sathish Chandra Kumar
Politecnico di Milano Xu Liu Fang
Piazza Leonardo da Vinci, 32
20133 Milano
Italy

Advanced Learning & Research Institute(AlaRI)
University of Lugano

Via Lambertenghi 10A, 6904 – Lugano
Switzerland

CONTENTS

- 161 -

1. Introduction:... 4
1.1 Analog-Digital: .. 4
1.2 Compression: ... 5
1.3 IP Conversion: ... 5
1.4 Extraction of Digitized Voice from IP:... 5
1.5 De-compression: .. 5
1.6 Digital – Analog:.. 5

2. ARCHITECTURE 1 : .. 6
2.1 CODEC :.. 6
2.2 DSPx(DSP1,DSP2,DSP3) : ... 7
2.3 Packet Processor : .. 7
2.4 Network MicroController: ... 7

3. ARCHITECTURE 2 : ... 8
3.1 CODEC :.. 8
3.2 HIGH END NETWORK PROCESSOR : ... 8

4. PERFORMANCE EVALUATION PARAMETERS : .. 9
4.1 Description of Architecture 1 :... 9

4.1.1 Queue 1 , 1.1 , 1.2 :... 9
4.1.2 Queue 2:.. 9
4.1.3 Queue 3:.. 11
4.1.5 Queue 4 ... 11
4.1.6 Queue 5:.. 11
4.1.7 Queue 6:.. 11
4.1.8 Queue 7:.. 11
4.1.9 Queue 8,8.1,8.2:.. 11

4.2 Description of Architecture 2 :... 11
4.2.1 Queue 1 :... 11
4.2.2 Queue 2:.. 12
4.2.3 Queue 3:.. 12

4.3 Parameters – Architecture 1:.. 14
4.3.1 CALL 1:... 14
4.3.2 DSP 1,DSP 2,DSP 3 : ... 14
4.3.3 Processor :.. 15
4.3.4 Netcontrol: .. 15
4.3.5 MEASUREMENT CRITERIA.. 15

4.4 Parameters – Architecture 2:.. 15
4.4.1 CALL :... 16
4.4.2 CPU: ... 16
4.4.3 MEASUREMENT CRITERIA:.. 16

5.Conclusion .. 16
6. Limitations & Assumptions ... 17
7.References ... 17
APPENDIX A:... 17

MATLAB... 17
8.1 MATLAB CODE – Architecture 1.. 17

8.1.1 Equal Routing Probability , s11=s12=s13>s2>s3... 17
8.1.2 Equal Routing Probability , s11=s12=s13>s2>s3 (Service Times are halved).............. 18
8.1.3 s11 = s12 = s13 > s2 > s3, Routing : r1=2* r2=3* r3 .. 19
8.1.4 Equal Routing Probability, Routing : s11>s12>s13 .. 20
8.1.5 r1=2 r2= 4r3, s11>s12>s13 .. 21
8.1.6 r1=2 r2=3r3, s11>s12>s13 ... 22

- 162 -

8.1.7 r1=2 r2=3r3, s11<s12<s13 ... 23
8.1.8 r1= r2= r3, s13>s12>s11 .. 24
8.1.9 s11=s12=s13,s11 >s2>s3, r1=r2=r3 .. 25
8.1.10 s11=s12=s13,S11<s2>s3 r1=r2=r3.. 26
8.1.11 r1=2 r2=3r3 , s11=2s12=3s13 .. 27
8.1.12 r1=2 r2=3r3, s11=2s12=3s13 ... 28

8.2 MATLAB CODE – Architecture 2.. 29
8.2.1 S = 0.255 , x=1:0.1:4 .. 29
8.2.2 S = 0.255/2, x=1:0.1:9... 30
8.2.3 s3=0.255 , x=1:0.1:7.5 .. 31

9. TABULAR RESULTS : .. 32
9.1 Win Modelling Tool - ARCHITECTURE 1.. 32

9.1.1 Equal Routing Probability , s11=s12=s13>s2>s3... 32
9.1.2 Equal Routing Probability , s11=s12=s13>s2>s3 (Service Time halved)...................... 33
9.1.3 s11 = s12 = s13 > s2 > s3, Routing : r1=2* r2=3* r3 .. 34
9.1.4 Equal Routing Probability, Routing : s11>s12>s13 .. 35
9.1.5 r1=2 r2= 4r3, s11>s12>s13 ... 36
9.1.6 r1=2 r2=3r3, s11>s12>s13 .. 36
9.1.7 r1=2 r2=3r3, s11<s12<s13 .. 37
9.1.8 r1= r2=r3, s11<s12<s13 .. 38
9.1.9 s11=s12=s13,s11 >s2>s3, r1=r2=r3 ... 39
9.1.10 s11=s12=s13,S11<s2>s3 r1=r2=r3... 40
9.1.11 r1=2 r2=3r3 , s11=2s12=3s13 ... 41
9.1.12 r1=2 r2=3r3, s11=2s12=3s13 .. 42

9.2 Win Modelling Tool - ARCHITECTURE 2.. 43
9.2.1 S = 0.255 , x=1:0.1:4.. 43
9.2.2 S = 0.255/2, x=1:0.1:9... 43
9.2.3 s3=0.255 , x=1:0.1:7.5 .. 44

- 163 -

1. Introduction:

In principle, two basic technologies are used for building high-capacity networks: circuit switching
and packet switching.

In circuit -switched networks, network resources are reserved all the way from sender to receiver
before the start of the transfer, thereby creating a circuit. The resources are dedicated to the circuit
during the whole transfer. Control signaling and payload data transfers ar e separated in circuit-
switched networks. Processing of control information and control signaling such as routing is
performed mainly at circuit setup and termination. Consequently, the transfer of payload data within
the circuit does not contain any overhead in the form of headers or the like. Traditional voice
telephone service is an example of circuit switching. An advantage of circuit-switched networks is
that they allow for large amounts of data to be transferred with guaranteed transmission capacity,
thus providing support for real-time traffic. A disadvantage of circuit switching, however, is that if
connections are short-lived—when transferring short messages.

On the other hand, Packet switching was developed to cope more effectively with the data-
transmission limitations of the circuit-switched networks during bursts of random traffic. In packet
switching, a data stream is divided into standardized packets. Each contains address, size, sequence,
and error -checking information, in addition to the payload data. The packets are then sent through
the network, where specific packet switches or routers sort and direct each single packet.

In Packet switching ,the IP, packets are treated independently of each other inside the network,
because complete information concerning the packet destination is contained in each packet. This
means that packet order is not always preserved, because packets destined for the same receiver
may take different paths through the network.

In many aspects, a packet-switched network is a network of queues. Each network node contains
queues where incoming packets are queued before they are sent out on an outgoing link. If the rate
at which packets arrive at a switch point exceeds the rate at which packets can be transmitted, the
queues grow. The queuing causes delay, and if the queues overflow, packets are lost, which is
called congestion. Loss of data generally causes retransmissions that may either add to the
congestion or result in less-effective utilization of the network. The ability to support real-time
traffic in packet-switched networks thus calls for advanced control mechanisms for buffer handling
and direction. As a result, the complexity and necessary ability to process information, and
therefore the need for computer power, increases sharply when striving for high transmission
capacity.

Voice-Over-IP, (VoIP) is the latest buzz word these days. It involves digitizing the voice samples
and sending over IP medium. This technology threatens the very existence of a century old circuit-
switched traditional telephony system. It involves several steps to convert Analog voice to IP
Packets and also to convert IP Packets to Analog voice.

1.1 Analog-Digital:

The Analog voice coming from various sources are digitized using CODEC (Code r/Decoder) and
the resultant digital samples are sampled using Pulse Code Modulation (PCM).The Sampling is
followed by Quantization. This process allows us to determine the amplitude range and with in this
range each value is assigned a distinct value.

- 164 -

The bottom line is that the process of sampling gives us amplitudes and the process of Quantization
allows us to depict the amplitude values in bits.

1.2 Compression:

The Analog voice is digitized and is represented in the forms of bits. This data is further
compressed to decrease the length of payload. To compress the digitized data, there are different
compression algorithms like G.723, G.729,G.728,G.711 etc. Added to these compression
techniques, different noise reduction, echo cancellation algorithms could be inserted to have better
voice quality

1.3 IP Conversion:

The voice data ie. compressed digitized data, is converted into RTP (Real Time Protocol) & RTCP
(Real Time Control Protocol) packets and uses TCP/IP protocol, to send the data into IP cloud.

To convert an IP Packet into Analog samples, the following steps are employed.

1.4 Extraction of Digitized Voice from IP:

The IP packets are received over IP cloud and the voice information encapsulated in IP packet is
defragmented to extract the RTP Packet. Depending on source and destination address, the voice
packets are extracted to send for de -compression.

1.5 De-compression:

The Digitized sample which is compressed using any of the compression techniques are
decompressed accordingly and the extract voice information is made free from noise and echo
before sending it for Digital-Analog conversion.

1.6 Digital – Analog:

The Digital information of voice encoded in zeros and ones is converted back to analog signals of
sine waves using CODEC(Coder/Decoder) and is passed to different Analog listeners.

The above techniques are the traditional entities of VoIP Gateway which employs the steps 1.1 ,1.2
& 1.3 are used in converting Analog signal – Digital packet – IP packet and the steps 1.4,1.5 & 1.6
are used in converting IP packet – Digital packet – Analog signal. The VoIP Gateway will be
designed to do the above conversion for numerous telephonic users. The number of subscribers, it
can support depends on various factors and parameters. Given the above steps a closer look, it
involves many queues, packets, service time, arrival time, resident time at each node of conversion.

In this report, we are evaluating the VoIP Gateway, which is available in two flavours are
discussed. Also different performance evaluating variables, constraints and other influencing factors
are dealt. Hence this report is an attempt to introduce the VoIP Gateway as a testing entity and to
evaluate the performance of it.

- 165 -

2. ARCHITECTURE 1 :

The above picture shows our first flavour of VoIP Gateway. It consists of pool of DSPs
(DSP1,DSP2,DSP3), Packet Processor(DSP), Network Micro-Controller(Low End Processor) and
Hardware components as CODECs.

2.1 CODEC :

This section of Hardware contains CODECS to convert Analog signals to Digital samples and
vice-versa. It receives Analog signals from different sources(Telephones) and converts into Digital
samples and gives it as input to DSPs

On the other way, it receives Digital signals as input and converts into Analog signals and then
sends it to listeners

Hence this section of hardware takes care of sections 1.1 & 1.6 as explained above.

Network
MicroController

ollo

Packet
Processor

 DSP 1

 DSP 2

 DSP 3

IP Network

 Hardware CODEC
(Coder/Decoder ie Analog/Digital conver ter)

Digital samples to
DSP 1

Digital samples to
DSP2

Digital samples to
DSP 3

Compressed /
Decompressed Data

IP packet carrying

Analog Samples

- 166 -

2.2 DSPx(DSP1,DSP2,DSP3) :

The three DSPs shown above receives digital samples, checks for error correction/detection and
performs echo cancellation on the received signal and later it compresses the signal depending on
the compression algorithm. After the completion of compression, it submits a packet output which
is fed as input to the packet processor. During the execution of this path, it executes the
functionalities of section 1.2 as explained above.

On the other hand, it receives voice samples in digitized format from packet processor and it
decompresses the signal(depending on the compression used) and later it checks for error
correction/detection and also echo cancellation, which inturn is fed as input to Hardware CODEC.
During the execution of this path, it executes the functionalities of section 1.5 as explained above.

2.3 Packet Processor :

This Processor acts as Multiplexe r / Demultiplexer between DSPs and Network Microcontroller.
Also, the main objective of using this processor is to lessen the burden on Network Microcontroller
in segregating and desegregating the voice samples.

On one end, it receives voice samples from 3 DSPs i.e information content of X channels * 3 = 3X
channel information and sends it to Network MicroController. During this operation,it acts as
traffic integrator (De-Multiplexer) and it feeds input to Network Micro-Controller.

On the other end, it receives voice samples from Network MicroController(information
corresponding to Y channels for 3 DSPs). During this operation, it acts as traffic disintegrator
(Multiplexer) and it sends the samples to the corresponding DSP by employing channel checking
mechanisms.

2.4 Network MicroController:

This MicroController takes voice samples from packet processor and employs RTP & RTCP
packetization and in turn frames IP packet and outputs into IP network. Hence it executes the
section 1.3 as explained above.

On the other hand, it receives IP packets from the network, extracts RTP & RTCP packets and in
turn extracts the voice sample information in RTP packet and it feeds to packet processor as input.
Hence it executes the section 1.4 as explained above.

NOTES :

It is assumed for evaluation that, Digital samples for X channels is given as input to each DSP and
the Network MicroController outputs IP packets for X channels

Also, the other consideration is that, the Network MicroController receives IP information of X
channels and each DSP outputs digital data corresponding to X channels to CODEC.

- 167 -

3. ARCHITECTURE 2 :

The above picture shows our second flavour of VoIP Gateway. It consists of High End Network
processor and Hardware components as CODECs.

3.1 CODEC :

This section of CODEC is similar to the model described in Architecture 1. The only difference is
the CODEC ip/op is connected to Network Processor and it sends/receives digital samples
corresponding to Y channels.

Also, it is implied that this section of hardware takes care of sections 1.1 & 1.6 as explained above.

3.2 HIGH END NETWORK PROCESSOR :

This Processor acts as both DSP and Network Processor. Hence the name High End Network
Processor. It contains the modules like Echo Cancellation, Compression/De-Compression, RTP –
RTCP Handling, IP Handling. Basically this processor could be defined as a system which replaces

High End

Network Processor

Hardware CODEC

(Coder/Decoder ie Analog/Digital converter)

IP
Network

Analog Signals

Digital Samples

IP Packet carrying
info

- 168 -

Network MicroController, Packet Processor and DSPs, because of its high end capabilities that
includes the speed of execution and better architecture of the processor.

On one end, it receives digital samples related to Y channels, does error correction/error detection,
Echo Cancellation and also runs compression algorithm. The compressed voice packet is packetized
into RTP , RTCP packets and subsequently into IP packet. Hence it performs the functions listed in
the sections 1.2 & 1.3.

On other end, it receives IP packet for Y channels, defragments the IP packet and extracts the RTP
& RTCP information and then takes the voice sample. The voice sample is sent for decompression
and later it is checked for errors and echo cancellation. After the refinement of packet, it employs
channel identification mechanism and finally writes into codec.Hence it performs the functions
listed in the sections 1.4 & 1.5.

NOTES :

It is assumed for evaluation that, Digital samples for Y channels s is given as input to High End
Network Processor and it outputs IP packets for Y channels

Also, the other consideration is that, the High End Network Micro Processor receives IP packet
information of Y channels and digital data corresponding to Y channels to CODEC.

4. PERFORMANCE EVALUATION PARAMETERS :

4.1 Description of Architecture 1 :

As shown in the below diagram, it represents the practical representation of Voice Gateway of
Architecture 1. This architecture contains 12 queues in which 6 queues(No:1,1.1,1.2,2,3,4,) are used
for Digital sample to IP conversion and other 6 queues(No: 5,6,7,8,8.1,8.2) are used to convert IP to
Digital sample. The description of each queue is described below:

4.1.1 Queue 1 , 1.1 , 1.2 :

These queues are identical to each other because of the data it carries. But it operates on different
DSPs and gets data from different CODECs. Each queue contains Digital samples for X channels.
This queue is populated after getting the Digital data from CODEC. This data is given as input to
DSP which does Echo cancellation, Compression of the signal.

4.1.2 Queue 2:

This queue takes input from the queues numbered 2 and is fed to Packet Processor where it does
error checking . In this way of operation, it acts as multiplexer by taking Digital samples from

- 169 -

Echo Cancellation,
Compression/Decompression

Packet Processor

(Multiplexer,DeMultiplexer)

Digital Sample – RTP,RTCP
RTP,RTCP – IP Packet
IP Packet – RTP,RTCP
RTP,RTCP – Digital Sample

Echo Cancellation,
Compression/Decompression

Echo Cancellation,
Compression/Decompression

 IP Network

IP
CLOUD

Digital Samples

Digital
Digital Samples

Digital Samples

IP Packet

 1

2

 3

 4

5
6

 7

8 8.1

8.2

1.1
 1.2

- 170 -

each DSP, and routing to the queue 4. This contains samples from 3 * X = 3X (i.e Y) channels
information.

4.1.3 Queue 3:

This queue is the output from Packet Processor which is echo free,compressed and error free
packet. This queue is given as input to Network MicroController for RTP,RTCP and subsequently
IP processing.

4.1.5 Queue 4:

This queue is the output from Network MicroController and represents the IP packet which contains
information about RTP,RTCP,Voice(Digital) samples to be routed to IP cloud.

4.1.6 Queue 5:

This queue is populated from the IP input received from IP cloud which contains information as
stated in Queue 5 and is fed as input to Network MicroController for further processing.

4.1.7 Queue 6:

This queue is populated by Network MicroController after extracting RTP,RTCP information from
the IP packet(Queue 5) and subsequently Digital Samples which are compressed, errorfree .This is
fed as input to Packet Processor.

4.1.8 Queue 7:

This queue contains information for 3 * X = 3X (i.e Y) channels contains voice packet after
undergoing error checking by Packet Processor and this information is passed to the queues
numbered 8,8.1,8.2 depending on the channel numbers. In this scenario Packet Processor acts as
De-Multiplexer taking inputs from queue 7 and passing it on to queues 8,8.1,8.2 .

4.1.9 Queue 8,8.1,8.2:

This queue contains the data received from packet processor and contains data for X channels each
to give input to DSPs for De-Compression & Echo Cancellation.

4.2 Description of Architecture 2 :

As shown in the below diagram, it represents the practical representation of Voice Gateway of
Architecture 2. This architecture contains 3 queues in which 2 queues(No:1 & 2) are used for
Digital sample to IP conversion and the other queue(No: 3) are used to convert IP to Digital
sample. The description of each queue is described below :

4.2.1 Queue 1 :

This queue contains Digital Sample received from different CODECs and contains samples for Y
channels.This is fed as input to High End Network Processor for subsequent processing.

- 171 -

4.2.2 Queue 2:

The High End Network Processor received Digital samples , it checks for echo cancellation and
compresses it using different compression algorithms and subsequently frames RTP,RTCP packets
before encapsulating in IP format. This queue contains IP Packet from High End Network Processor
and it pumps the packet to IP Cloud.

4.2.3 Queue 3:

This queue does exactly the opposite of Queue 2. It receives IP packet from IP cloud. It collects the
information, executes RTP & RTCP , extracts the voice (Digital) sample and runs echo cancellation
and De-Compression algorithm before feeding it to CODECs.

- 172 -

Echo Cancellation,Compression/Decompression

Voice Samples – RTP, RTCP

RTP,RTCP – IP packet

IP packet – RTP,RTCP
RTP,RTCP – Voice Samples

Y Channel information in
IP Format to IP Network

Y Channel
information from IP
Network

IP Cloud

1

2

3

4

Y Channel information in
Digital Format

- 173 -

4.3 Parameters – Architecture 1:

The Architecture – 1 could be represented in the format as shown below using Win Modelling Tool.
Each entity is described below:-

4.3.1 CALL 1:

This is the input to the system ie the output of CODEC which carries Digital Samples. The Arrival
Rate of CALL 1 describes total customers in the system which conveys the total number of
channels (Y = X1 + X2 + X3),where X1,X2,X3 represents the arrival rate for DSP1,DSP2& DSP3
respectively. The load could be distributed indifferent ways depending upon routing used. The
routing probability used will decide the input to each DSP ie X as described above.

1)If arrival rate for DSP1,DSP2,DSP3 is equal , ie DSP1=DSP2=DSP3=0.333333 then X1,X2,X3
are equal (hence Y = 3 * X)

2)If Routing follows DSP1>DSP2>DSP3 then X1>X2>X3

3)If Routing follows DSP1<DSP2<DSP3 then X1<X2<X3

so for a given Arrival Rate Y, whatever may be the routing formula , always it follows Y =
X1+X2+X3

4.3.2 DSP 1,DSP 2,DSP 3 :

The Basic idea of using these DSPs is for Compression and error detection. The DSPs could be
selected in different ways wrt performance, frequency of operation which is directly correlated with
service time of the Win Modelling Tool.

Eg:- It could be assumed for a given execution of application that for a DSP whose frequency of
operation = 75 MHZ corresponds to a service time of 0.25 Sec, it is always implied for other DSP
whose frequency of operation < 75 MHZ then service time is always > 0.25 Sec. Hence frequency
of operation is indirectly proportional to service time. More the frequency lesser the service time.

- 174 -

Hence the DSPs could be analyzed as FCFS queues with variant service times

4.3.3 Processor :

This processor receives the samples from 3 DSPs, hence the queue is designed as PS (processor
sharing) and the frequency of execution of this processor could be correlated with service time.

4.3.4 Netcontrol:

This processor is a Network Controller which accepts samples from Packet Processor and outputs to
IP Domain. This system could be analyzed as FCFS queue with variable service time which decides
frequency of operation of the Controller.

4.3.5 MEASUREMENT CRITERIA :

As described above the system is studied considering t he follwing parameters:-

1.Variable Arrival Rate.

2.Routing probability(among DSP1,DSP2,DSP3) (i.e Equal probability, lesser & greater probability
when comparing DSP1,DSP2,DSP3)

3.Variable Service times(DSP1,DSP2,DSP3,Processor,Netcontroller)

Also, assuming s11,s12,s13 to be service time for DSP1,DSP2,DSP3; x1,x2,x3 being arrival rates
for DSP1,DSP2,DSP3. The Response time at the input of processor is given by

R(i) =

 (((s11/(1-x1*s11)) * x1/(x1+x2+x3)) + ((s12/(1-x2*s12)) * x2/(x1+x2+x3)) + ((s13/(1-x3*s13)) * x3/(x1+x2+x3)))

Hence we used matlab tool to get the Response Time which employs above equation and also for
different Routing probabilities. The same variables are considered to get the output parameters like
Queue Length, Throughput,Response Time,utilization,Waiting time etc using Win Modelling Tool
and the results are tabulated.

Also the results of the graphs, tabulated values gives ideal values for the system parameters like
X,X1,X2,X3,Y. for given constraints of the system.

4.4 Parameters – Architecture 2:

- 175 -

4.4.1 CALL :

This is the input to the system ie the output of CODEC which carries Digital Samples. The Arrival
Rate of CALL 1 describes total customers in the systems which conveys the total number of
channels (Y).

4.4.2 CPU:

The service time of CPU decides the frequency of operation of the Processor. The frequency of
operation of the CPU could be studied properly to understand whether the CPU can sustain to the
Arrival Rate so that there will be no packet loss.

4.4.3 MEASUREMENT CRITERIA:

1.Variable Arrival Rate.

2.Variable Service times(CPU)

Also the Response time

R(i) = S/(1-x*S)

Where S – Service Time, X – Arrival Rate,

we used matlab tool to get the Response Time to plot the graph between arrival rate and service
time which employs above equation and also for different Routing probabilities. The same variables
are considered to get the output parameters like Queue Length, Throughput,Response
Time,utilization,Waiting time etc using Win Modelling Tool and the results are tabulated.

5.Conclusion

This project makes a niche to all the designers of VoIP Gateway. The VoIP Gateway, available in
two flavours is analyzed & studied for different system parameters like Arrival Rate, Response
Time, Queue Lenghts, Throughput, Utilization, Waiting Time etc. The values and graphs related to
the above parameters are tabulated.

The results mentioned in Appendix A & B gives an input framework for any person who would like
to select the design of VoIP Gateway. The results tabulated gives an indication about the
performance of the system taking different real time design components like frequency of operation
of Processors(Service Time) , Performance(Throughput) , Input (Arrival Rate), Output
(Utilization). These values could be taken as base reference by any customer who wish to evaluate
the better architecture that suits the demands from the Client(Cost of the project, Design time, Man
Power etc.,)

To conclude V oIP Gateway offers lucrative advantages to customers and service providers alike.
However, as w ith any new technology, it brings its own sets of network design and optimization
issues. By understanding the important parameters, and acquiring the knowledge over performance
evaluation parameters, customers & clients can reap the benefits of voice over packet services.

- 176 -

6. Limitations & Assumptions

 1.It is assumed that sections described in 1.1 & 1.6 will be carried out by hardware and
the DSPx(DSP1,DSP2,DSP3) always gets Digital Samples as input & output.

 2. The VoIP Gateway is analyzed only for Digital to IP conversion. It doesn’t consider any
parameters involving IP – Digital conversion. The parameters & other system parameters
considering IP – Digital conversion (section 1.4 to 1.6) in coherence with Digital – IP
conversion(section 1.1 to 1.3) is beyond the scope of this current project.

7.References

[1] William Stallings ,“Queuing Analysis”

[2] http://www.protocols.com/papers/voip2.htm “Fine - Tuning Voice Over Packe t Services”

[3] http://www.cisco.com/en/US/tech/tk652/tk701/tech_white_papers_list.html “IP Telephony /
 VoIP White Papers ”

APPENDIX A:

MATLAB

8.1 MATLAB CODE – Architecture 1

In this section, we would like to present the Matlab code and the graph we obtained for different
conditions and parameters.

8.1.1 Equal Routing Probability , s11=s12=s13>s2>s3

x=1:0.1:15;
s11=0.25;
s12=0.25;
s13=0.25
s2=0.003
s3=0.002
r1=x./3
r2=x./3
r3=x./3
y=(1/3)*(s11./(1-r1.*s11))+(1/3)*(s12./(1-r1.*s12))+(1/3)*(s13./(1-r1.*s13))+(s2./(1-
x.*s2))+(s3./(1-x.*s3));
title('multiple server');
plot(x,y),grid;

- 177 -

8.1.2 Equal Routing Probability , s11=s12=s13>s2>s3 (Service Times are halved)

x=1:0.1:30;
s11=0.25/2;
s12=0.25/2;
s13=0.25/2
s2=0.003/2
s3=0.002/2
r1=x./3
r2=x./3
r3=x./3
y=(1/3)*(s11./(1-r1.*s11))+(1/3)*(s12./(1-r1.*s12))+(1/3)*(s13./(1-r1.*s13))+(s2./(1-
x.*s2))+(s3./(1-x.*s3));
title('multiple server');
plot(x,y),grid;

- 178 -

8.1.3 s11 = s12 = s13 > s2 > s3, Routing : r1=2* r2=3* r3

x=1:0.1:10;
s11=0.25;
s12=0.25;
s13=0.25
s2=0.003
s3=0.002
r1=x.*6/11
r2=x.*3/11
r3=x.*2/11
y=(1/3)*(s11./(1-r1.*s11))+(1/3)*(s12./(1-r1.*s12))+(1/3)*(s13./(1-r1.*s13))+(s2./(1-
x.*s2))+(s3./(1-x.*s3));
title('multiple server');
plot(x,y),grid;

- 179 -

8.1.4 Equal Routing Probability, Routing : s11>s12>s13

% r1= r2= r3
% s11>s12>s13

x=1:0.1:10;
s11=0.5;
s12=0.25;
s13=0.25/2
s2=0.003
s3=0.002
r1=x./3
r2=x./3
r3=x./3
y=(1/3)*(s11./(1-r1.*s11))+(1/3)*(s12./(1-r1.*s12))+(1/3)*(s13./(1-r1.*s13))+(s2./(1-
x.*s2))+(s3./(1-x.*s3));
title('multiple server');
plot(x,y),grid;

- 180 -

8.1.5 r1=2 r2= 4r3, s11>s12>s13

% r1=2 r2= 4r3
% s11>s12>s13

x=1:0.1:5
s11=0.5;
s12=0.25;
s13=0.25/2
s2=0.003
s3=0.002
r1=x.*4/7
r2=x.*2/7
r3=x.*1/7
y=(4/7)*(s11./(1-r1.*s11))+(2/7)*(s12./(1-r1.*s12))+(1/7)*(s13./(1-r1.*s13))+(s2./(1-
x.*s2))+(s3./(1-x.*s3));
title('multiple server');
plot(x,y),grid;

- 181 -

8.1.6 r1=2 r2=3r3, s11>s12>s13

% r1=2 r2=3r3
% s11>s12>s13

x=1:0.1:5
s11=0.5;
s12=0.25;
s13=0.25/2
s2=0.003
s3=0.002
r1=x.*6/11
r2=x.*3/11
r3=x.*2/11
y=(4/7)*(s11./(1-r1.*s11))+(2/7)*(s12./(1-r1.*s12))+(1/7)*(s13./(1-r1.*s13))+(s2./(1-
x.*s2))+(s3./(1-x.*s3));
title('multiple server');
plot(x,y),grid;

- 182 -

8.1.7 r1=2 r2=3r3, s11<s12<s13

% r1=2 r2=3r3
% s11<s12<s13

x=1:0.1:5
s11=0.25/2;
s12=0.25;
s13=0.25*2
s2=0.003
s3=0.002
r1=x.*6/11
r2=x.*3/11
r3=x.*2/11
y=(4/7)*(s11./(1-r1.*s11))+(2/7)*(s12./(1-r1.*s12))+(1/7)*(s13./(1-r1.*s13))+(s2./(1-
x.*s2))+(s3./(1-x.*s3));
title('multiple server');
plot(x,y),grid;

- 183 -

8.1.8 r1= r2= r3, s13>s12>s11

% r1= r2= r3
% s13>s12>s11

x=1:0.1:10;
s11=0.25/2;
s12=0.25;
s13=0.5
s2=0.003
s3=0.002
r1=x./3
r2=x./3
r3=x./3
y=(1/3)*(s11./(1-r1.*s11))+(1/3)*(s12./(1-r1.*s12))+(1/3)*(s13./(1-r1.*s13))+(s2./(1-
x.*s2))+(s3./(1-x.*s3));
title('multiple server');
plot(x,y),grid;

- 184 -

8.1.9 s11=s12=s13,s11 >s2>s3, r1=r2=r3

% s11=s12=s13,s11 >s2>s3
%r1=r2=r3

x=1:0.1:12;
s11=0.25;
s12=0.25;
s13=0.25
s2=0.3
s3=0.5
r1=x./3
r2=x./3
r3=x./3
y=(1/3)*(s11./(1-r1.*s11))+(1/3)*(s12./(1-r1.*s12))+(1/3)*(s13./(1-r1.*s13))+(s2./(1-
x.*s2))+(s3./(1-x.*s3));
title('multiple server');
plot(x,y),grid;

- 185 -

8.1.10 s11=s12=s13,S11<s2>s3 r1=r2=r3

% s11<s2<s3 , s11 = s12=s13
%r1=r2=r3

x=1:0.01:5;
s11=0.25;
s12=0.25;
s13=0.25
s2=0.3
s3=0.27
r1=x./3
r2=x./3
r3=x./3
y=(1/3)*(s11./(1-r1.*s11))+(1/3)*(s12./(1-r1.*s12))+(1/3)*(s13./(1-r1.*s13))+(s2./(1-
x.*s2))+(s3./(1-x.*s3));
title('multiple server');
plot(x,y),grid;

- 186 -

8.1.11 r1=2 r2=3r3 , s11=2s12=3s13

% r1=2 r2=3r3
% s11=2s12=3s13

x=1:0.1:20
s11=0.25*6/11;
s12=0.25*3/11;
s13=0.25*2/11
s2=0.003
s3=0.002
r1=x.*6/11
r2=x.*3/11
r3=x.*2/11
y=(4/7)*(s11./(1-r1.*s11))+(2/7)*(s12./(1-r1.*s12))+(1/7)*(s13./(1-r1.*s13))+(s2./(1-
x.*s2))+(s3./(1-x.*s3));
title('multiple server');
plot(x,y),grid;

- 187 -

8.1.12 r1=2 r2=3r3, s11=2s12=3s13

% r1=2 r2=3r3
% s11=2s12=3s13

x=1:0.1:27
s11=0.25/2*6/11;
s12=0.25/2*3/11;
s13=0.25/2*2/11
s2=0.003
s3=0.002
r1=x.*6/11
r2=x.*3/11
r3=x.*2/11
y=(4/7)*(s11./(1-r1.*s11))+(2/7)*(s12./(1-r1.*s12))+(1/7)*(s13./(1-r1.*s13))+(s2./(1-
x.*s2))+(s3./(1-x.*s3));
title('multiple server');
plot(x,y),grid;

- 188 -

8.2 MATLAB CODE – Architecture 2

8.2.1 S = 0.255 , x=1:0.1:4

x=1:0.1:4;
s3=0.255;
y=s3./(1-x.*s3);
title('single server');
plot(x,y),grid;

- 189 -

8.2.2 S = 0.255/2, x=1:0.1:9

x=1:0.1:9;
s3=0.255/2;
y=s3./(1-x.*s3);
title('single server');
plot(x,y),grid;

- 190 -

8.2.3 s3=0.255 , x=1:0.1:7.5

x=1:0.1:7.5;
s3=0.255;
y=s3./(1-x.*s3);
title('single server');
plot(x,y),grid;

- 191 -

9. TABULAR RESULTS :

 9.1 Win Modelling Tool - ARCHITECTURE 1

9.1.1 Equal Routing Probability , s11=s12=s13>s2>s3

Analysis results for Simulation:

Queue Length (n)
 VOIP1 GLOBALS
DSP1 26.03 26.03
DSP2 35.56 35.56
DSP3 43.35 43.35
Processor 0.03631 0.03631
NetControl 0.02411 0.02411
GLOBALS 105 105

Throughput (X)
 VOIP1 GLOBALS
DSP1 3.977 3.977
DSP2 3.985 3.985
DSP3 3.994 3.994
Processor 11.95 11.95
NetControl 11.95 11.95
GLOBALS 12 12

- 192 -

Response Time (R)
 VOIP1 GLOBALS
DSP1 2.177 2.169
DSP2 2.974 2.963
DSP3 3.626 3.613
Processor 0.003037 0.003026
NetControl 0.002016 0.002009
GLOBALS 8.783 8.749

Utilization (U)
 VOIP1 GLOBALS
DSP1 0.9942 0.9942
DSP2 0.9963 0.9963
DSP3 0.9984 0.9984
Processor 0.01793 0.01793
NetControl 0.01195 0.01195
GLOBALS 0 0

Waiting Time (W)
 VOIP1 GLOBALS
DSP1 6.545 6.545
DSP2 8.922 8.922
DSP3 10.86 10.86
Processor 0.003037 0.003037
NetControl 0.002016 0.002016
GLOBALS 0 0

9.1.2 Equal Routing Probability , s11=s12=s13>s2>s3 (Service Time halved)

Analysis results for Simulation:

Queue Length (n)
 VOIP1 GLOBALS
DSP1 7.59 7.59
DSP2 7.943 7.943
DSP3 6.846 6.846
Processor 0.03453 0.03453
NetControl 0.02301 0.02301
GLOBALS 22.44 22.44

Throughput (X)
 VOIP1 GLOBALS
DSP1 7.673 7.673
DSP2 7.681 7.681
DSP3 7.636 7.636
Processor 22.99 22.99
NetControl 22.99 22.99
GLOBALS 23 23

Response Time (R)
 VOIP1 GLOBALS
DSP1 0.3302 0.33
DSP2 0.3455 0.3453
DSP3 0.2978 0.2976
Processor 0.001502 0.001501
NetControl 0.001001 0.001
GLOBALS 0.9759 0.9755

Utilization (U)
 VOIP1 GLOBALS

- 193 -

DSP1 0.9592 0.9592
DSP2 0.9601 0.9601
DSP3 0.9545 0.9545
Processor 0.01724 0.01724
NetControl 0.01149 0.01149
GLOBALS 0 0

Waiting Time (W)
 VOIP1 GLOBALS
DSP1 0.9891 0.9891
DSP2 1.034 1.034
DSP3 0.8965 0.8965
Processor 0.001502 0.001502
NetControl 0.001001 0.001001
GLOBALS 0 0

9.1.3 s11 = s12 = s13 > s2 > s3, Routing : r1=2* r2=3* r3

Analysis results for Simulation:

Queue Length (n)
 VOIP1 GLOBALS
DSP1 4.672 4.672
DSP2 0.5743 0.5743
DSP3 0.3579 0.3579
Processor 0.021 0.021
NetControl 0.014 0.014
GLOBALS 5.639 5.639

Throughput (X)
 VOIP1 GLOBALS
DSP1 3.823 3.823
DSP2 1.903 1.903
DSP3 1.273 1.273
Processor 6.998 6.998
NetControl 6.998 6.998
GLOBALS 7 7

Response Time (R)
 VOIP1 GLOBALS
DSP1 0.6676 0.6674
DSP2 0.08206 0.08204
DSP3 0.05114 0.05112
Processor 0.003001 0.003
NetControl 0.002 0.002
GLOBALS 0.8058 0.8056

Utilization (U)
 VOIP1 GLOBALS
DSP1 0.9557 0.9557
DSP2 0.4757 0.4757
DSP3 0.3182 0.3182
Processor 0.0105 0.0105
NetControl 0.006998 0.006998
GLOBALS 0 0

Waiting Time (W)
 VOIP1 GLOBALS
DSP1 1.222 1.222
DSP2 0.3018 0.3018
DSP3 0.2812 0.2812

- 194 -

Processor 0.003001 0.003001
NetControl 0.002 0.002
GLOBALS 0 0

9.1.4 Equal Routing Probability, Routing : s11>s12>s13

Analysis results for Simulation:

Queue Length (n)
 VOIP1 GLOBALS
DSP1 1.962 1.962
DSP2 0.4591 0.4591
DSP3 0.2078 0.2078
Processor 0.015 0.015
NetControl 0.009998 0.009998
GLOBALS 2.654 2.654

Throughput (X)
 VOIP1 GLOBALS
DSP1 1.669 1.669
DSP2 1.668 1.668
DSP3 1.662 1.662
Processor 4.999 4.999
NetControl 4.999 4.999
GLOBALS 5 5

Response Time (R)
 VOIP1 GLOBALS
DSP1 0.3925 0.3924
DSP2 0.09184 0.09182
DSP3 0.04157 0.04156
Processor 0.003 0.002999
NetControl 0.002 0.002
GLOBALS 0.5309 0.5308

Utilization (U)
 VOIP1 GLOBALS
DSP1 0.8347 0.8347
DSP2 0.4169 0.4169
DSP3 0.2078 0.2078
Processor 0.007498 0.007498
NetControl 0.004999 0.004999
GLOBALS 0 0

Waiting Time (W)
 VOIP1 GLOBALS
DSP1 1.175 1.175
DSP2 0.2753 0.2753

DSP3 0.125 0.125
Processor 0.003 0.003
NetControl 0.002 0.002
GLOBALS 0 0

- 195 -

9.1.5 r1=2 r2= 4r3, s11>s12>s13

Analysis results for Simulation:

Queue Length (n)
 VOIP1 GLOBALS
DSP1 12.41 12.41
DSP2 0.2069 0.2069
DSP3 0.05429 0.05429
Processor 0.008983 0.008983
NetControl 0.005989 0.005989
GLOBALS 12.68 12.68

Throughput (X)
 VOIP1 GLOBALS
DSP1 1.732 1.732
DSP2 0.8277 0.8277
DSP3 0.4343 0.4343
Processor 2.994 2.994
NetControl 2.994 2.994
GLOBALS 3 3

Response Time (R)
 VOIP1 GLOBALS
DSP1 4.143 4.135
DSP2 0.0691 0.06897
DSP3 0.01813 0.0181
Processor 0.003 0.002994
NetControl 0.002 0.001996
GLOBALS 4.235 4.227

Utilization (U)
 VOIP1 GLOBALS
DSP1 0.99 0.99
DSP2 0.2069 0.2069
DSP3 0.05429 0.05429
Processor 0.004492 0.004492
NetControl 0.002994 0.002994
GLOBALS 0 0

Waiting Time (W)
 VOIP1 GLOBALS
DSP1 7.161 7.161
DSP2 0.25 0.25

DSP3 0.125 0.125
Processor 0.003 0.003
NetControl 0.002 0.002
GLOBALS 0 0

9.1.6 r1=2 r2=3r3, s11>s12>s13

Analysis results for Simulation:

Queue Length (n)

- 196 -

 VOIP1 GLOBALS
DSP1 6.633 6.633
DSP2 0.2385 0.2385
DSP3 0.07866 0.07866
Processor 0.01049 0.01049
NetControl 0.006991 0.006991
GLOBALS 6.968 6.968

Throughput (X)
 VOIP1 GLOBALS
DSP1 1.912 1.912
DSP2 0.9539 0.9539
DSP3 0.6293 0.6293
Processor 3.495 3.495
NetControl 3.495 3.495
GLOBALS 3.5 3.5

Response Time (R)
 VOIP1 GLOBALS
DSP1 1.898 1.895
DSP2 0.06823 0.06814
DSP3 0.0225 0.02247
Processor 0.003 0.002996
NetControl 0.002 0.001997
GLOBALS 1.993 1.991

Utilization (U)
 VOIP1 GLOBALS
DSP1 0.9562 0.9562
DSP2 0.2385 0.2385
DSP3 0.07866 0.07866
Processor 0.005243 0.005243
NetControl 0.003495 0.003495
GLOBALS 0 0

Waiting Time (W)
 VOIP1 GLOBALS
DSP1 3.469 3.469
DSP2 0.25 0.25
DSP3 0.125 0.125
Processor 0.003 0.003
NetControl 0.002 0.002
GLOBALS 0 0

9.1.7 r1=2 r2=3r3, s11<s12<s13

Analysis results for Simulation:

Queue Length (n)
 VOIP1 GLOBALS
DSP1 0.2396 0.2396
DSP2 0.2387 0.2387
DSP3 0.3469 0.3469
Processor 0.0105 0.0105
NetControl 0.006999 0.006999
GLOBALS 0.8427 0.8427

Throughput (X)

- 197 -

 VOIP1 GLOBALS
DSP1 1.916 1.916
DSP2 0.9549 0.9549
DSP3 0.6279 0.6279
Processor 3.499 3.499
NetControl 3.499 3.499
GLOBALS 3.5 3.5

Response Time (R)
 VOIP1 GLOBALS
DSP1 0.06846 0.06845
DSP2 0.06822 0.06821
DSP3 0.09913 0.09911
Processor 0.003 0.002999
NetControl 0.002 0.002
GLOBALS 0.2408 0.2408

Utilization (U)
 VOIP1 GLOBALS
DSP1 0.2396 0.2396
DSP2 0.2387 0.2387
DSP3 0.3141 0.3141
Processor 0.005249 0.005249
NetControl 0.003499 0.003499
GLOBALS 0 0

Waiting Time (W)
 VOIP1 GLOBALS
DSP1 0.125 0.125
DSP2 0.25 0.25

DSP3 0.5524 0.5524
Processor 0.003 0.003
NetControl 0.002 0.002
GLOBALS 0 0

9.1.8 r1= r2=r3, s11<s12<s13

Analysis results for Simulation:

Queue Length (n)
 VOIP1 GLOBALS
DSP1 0.2514 0.2514
DSP2 0.6006 0.6006
DSP3 32.52 32.52
Processor 0.01796 0.01796
NetControl 0.01197 0.01197
GLOBALS 33.4 33.4

Throughput (X)
 VOIP1 GLOBALS
DSP1 2.011 2.011
DSP2 1.993 1.993
DSP3 1.983 1.983
Processor 5.987 5.987
NetControl 5.987 5.987
GLOBALS 6 6

- 198 -

Response Time (R)
 VOIP1 GLOBALS
DSP1 0.04199 0.0419
DSP2 0.1003 0.1001
DSP3 5.431 5.419
Processor 0.003 0.002993
NetControl 0.002 0.001996
GLOBALS 5.579 5.566

Utilization (U)
 VOIP1 GLOBALS
DSP1 0.2514 0.2514
DSP2 0.4981 0.4981
DSP3 0.9916 0.9916
Processor 0.00898 0.00898
NetControl 0.005987 0.005987
GLOBALS 0 0

Waiting Time (W)
 VOIP1 GLOBALS
DSP1 0.125 0.125
DSP2 0.3014 0.3014
DSP3 16.4 16.4
Processor 0.003 0.003
NetControl 0.002 0.002
GLOBALS 0 0

9.1.9 s11=s12=s13,s11 >s2>s3, r1=r2=r3

Analysis results for Simulation:

Queue Length (n)
 VOIP1 GLOBALS
DSP1 0.6033 0.6033
DSP2 0.5892 0.5892
DSP3 0.5998 0.5998
Processor 2.128 2.128
NetControl 3000 3000
GLOBALS 3004 3004

Throughput (X)
 VOIP1 GLOBALS
DSP1 2.011 2.011
DSP2 1.986 1.986
DSP3 2.002 2.002
Processor 5.998 5.998
NetControl 3.999 3.999
GLOBALS 6 6

Response Time (R)
 VOIP1 GLOBALS
DSP1 0.1509 0.1005
DSP2 0.1474 0.0982
DSP3 0.15 0.09997
Processor 0.5322 0.3547
NetControl 750.2 500
GLOBALS 751.2 500.6

- 199 -

Utilization (U)
 VOIP1 GLOBALS
DSP1 0.5028 0.5028
DSP2 0.4964 0.4964
DSP3 0.5005 0.5005
Processor 0.8997 0.8997
NetControl 0.9997 0.9997
GLOBALS 0 0

Waiting Time (W)
 VOIP1 GLOBALS
DSP1 0.3 0.3
DSP2 0.2967 0.2967

DSP3 0.2996 0.2996
Processor 0.3548 0.3548
NetControl 750.2 750.2
GLOBALS 0 0

9.1.10 s11=s12=s13,S11<s2>s3 r1=r2=r3

Analysis results for Simulation:

Queue Length (n)
 VOIP1 GLOBALS
DSP1 0.3334 0.3334
DSP2 0.3327 0.3327
DSP3 0.3337 0.3337
Processor 1.2 1.2
NetControl 1.08 1.08
GLOBALS 3.279 3.279

Throughput (X)
 VOIP1 GLOBALS
DSP1 1.333 1.333
DSP2 1.331 1.331
DSP3 1.335 1.335
Processor 3.999 3.999
NetControl 3.999 3.999
GLOBALS 4 4

Response Time (R)
 VOIP1 GLOBALS
DSP1 0.08338 0.08335
DSP2 0.08322 0.08319
DSP3 0.08347 0.08344
Processor 0.3 0.2999
NetControl 0.27 0.2699
GLOBALS 0.8201 0.8199

Utilization (U)
 VOIP1 GLOBALS
DSP1 0.3334 0.3334
DSP2 0.3327 0.3327
DSP3 0.3337 0.3337
Processor 0.5999 0.5999
NetControl 0.5399 0.5399
GLOBALS 0 0

- 200 -

Waiting Time (W)
 VOIP1 GLOBALS
DSP1 0.2501 0.2501
DSP2 0.25 0.25

DSP3 0.25 0.25
Processor 0.3 0.3
NetControl 0.27 0.27
GLOBALS 0 0

9.1.11 r1=2 r2=3r3 , s11=2s12=3s13

Analysis results for Simulation:

Queue Length (n)
 VOIP1 GLOBALS
DSP1 429.6 429.6
DSP2 0.2616 0.2616
DSP3 0.1155 0.1155
Processor 0.04113 0.04113
NetControl 0.03701 0.03701
GLOBALS 430 430

Throughput (X)
 VOIP1 GLOBALS
DSP1 7.331 7.331
DSP2 3.837 3.837
DSP3 2.541 2.541
Processor 13.71 13.71
NetControl 13.71 13.71
GLOBALS 14 14

Response Time (R)
 VOIP1 GLOBALS
DSP1 31.33 30.68
DSP2 0.01908 0.01869
DSP3 0.008426 0.008251
Processor 0.003 0.002938
NetControl 0.0027 0.002644
GLOBALS 31.37 30.72

Utilization (U)
 VOIP1 GLOBALS
DSP1 0.9997 0.9997
DSP2 0.2616 0.2616
DSP3 0.1155 0.1155
Processor 0.02056 0.02056
NetControl 0.01851 0.01851
GLOBALS 0 0

Waiting Time (W)
 VOIP1 GLOBALS
DSP1 58.59 58.59
DSP2 0.06818 0.06818
DSP3 0.04545 0.04545
Processor 0.003 0.003
NetControl 0.0027 0.0027
GLOBALS 0 0

- 201 -

9.1.12 r1=2 r2=3r3, s11=2s12=3s13

Analysis results for Simulation:

Queue Length (n)
 VOIP1 GLOBALS
DSP1 2.433 2.433
DSP2 0.2226 0.2226
DSP3 0.09915 0.09915
Processor 0.07199 0.07199
NetControl 0.0648 0.0648
GLOBALS 2.891 2.891

Throughput (X)
 VOIP1 GLOBALS
DSP1 13.11 13.11
DSP2 6.529 6.529
DSP3 4.362 4.362
Processor 24 24
NetControl 24 24
GLOBALS 24 24

Response Time (R)
 VOIP1 GLOBALS
DSP1 0.1014 0.1014
DSP2 0.009275 0.009274
DSP3 0.004131 0.004131
Processor 0.003 0.003
NetControl 0.0027 0.0027
GLOBALS 0.1205 0.1205

Utilization (U)
 VOIP1 GLOBALS
DSP1 0.8937 0.8937
DSP2 0.2226 0.2226
DSP3 0.09915 0.09915
Processor 0.036 0.036
NetControl 0.0324 0.0324
GLOBALS 0 0

Waiting Time (W)
 VOIP1 GLOBALS
DSP1 0.1856 0.1856
DSP2 0.03409 0.03409
DSP3 0.02273 0.02273
Processor 0.003 0.003
NetControl 0.0027 0.0027
GLOBALS 0 0

- 202 -

9.2 Win Modelling Tool - ARCHITECTURE 2

9.2.1 S = 0.255 , x=1:0.1:4

Analysis results for Simulation:

Queue Length (n)
 VOIP2 GLOBALS
CPU 28.64 28.64
GLOBALS 28.64 28.64

Throughput (X)
 VOIP2 GLOBALS
CPU 3.921 3.921
GLOBALS 3.94 3.94

Response Time (R)
 VOIP2 GLOBALS
CPU 7.305 7.27
GLOBALS 7.305 7.27

Utilization (U)
 VOIP2 GLOBALS
CPU 0.9999 0.9999
GLOBALS 0 0

Waiting Time (W)
 VOIP2 GLOBALS
CPU 7.305 7.305
GLOBALS 0 0

9.2.2 S = 0.255/2 , x=1:0.1:9

Analysis results for Simulation:

Queue Length (n)
 VOIP2 GLOBALS
CPU 1736 1736
GLOBALS 1736 1736

Throughput (X)
 VOIP2 GLOBALS
CPU 7.843 7.843
GLOBALS 9 9

Response Time (R)
 VOIP2 GLOBALS
CPU 221.4 192.9
GLOBALS 221.4 192.9

Utilization (U)
 VOIP2 GLOBALS
CPU 1 1
GLOBALS 0 0

Waiting Time (W)
 VOIP2 GLOBALS

- 203 -

CPU 221.4 221.4
GLOBALS 0 0

9.2.3 s3=0.255 , x=1:0.1:7.5

Analysis results for Simulation:

Queue Length (n)
 VOIP2 GLOBALS
CPU 118.6 118.6
GLOBALS 118.6 118.6

Throughput (X)
 VOIP2 GLOBALS
CPU 3.921 3.921
GLOBALS 4 4

Response Time (R)
 VOIP2 GLOBALS
CPU 30.25 29.66
GLOBALS 30.25 29.66

Utilization (U)
 VOIP2 GLOBALS
CPU 0.9999 0.9999
GLOBALS 0 0

Waiting Time (W)
 VOIP2 GLOBALS
CPU 30.25 30.25
GLOBALS 0 0

- 204 -

5 – Security

5.1 – Encryption Management in Wireless Personal Area Networks 206
5.2 – Modeling the Performance of SCADA Field Devices 232

- 205 -

Università della Svizzera Italiana – Advanced Learning and Research Institute - MAS 2006/07 - Performance Evaluation
Performance evaluation of encryption management in a beacon enabled low-rate wireless personal area network with star topology through queuing network modelling

1/26

Università della Svizzera Italiana
Advanced Learning and Resarch Institute

MAS 2006/07
Performance Evaluation (teacher: Giuseppe SERAZZI)

Julien CAMISANI – Fabio DE RICCARDIS

Performance evaluation of encryption management
in a beacon enabled low-rate wireless personal area

network (LR-WPAN) with star topology

through queuing network modelling

1 summary
1 summary...1
2 scope...1
3 IEEE Std 802.15.4-2003...2

3.1 overview..2
3.2 general description ..2
3.3 components of the IEEE 802.15.4 WPAN ..2
3.4 network topologies ..2
3.5 functional overview...3

4 literature exploration ..7
5 queuing network model ..11

5.1 simulation assumptions ...11
5.2 channel ..11
5.3 microcontroller unit...13

6 simulation results..14
6.1 M/M/n model, uplink mode...14
6.2 M/M/n model, downlink mode..17
6.3 M/M/n model, joint uplink and downlink mode..20

7 conclusions...23
8 further work..23
9 acronyms and abbreviations ...24
10 references ...24
11 appendix ...25

2 scope
Scope of this simulation is to assess the performance of an encryption management in a beacon enabled low-rate

wireless personal area network (LR-WPAN) with star topology by means of queuing networks theory, and possibly
evaluate the maximum level of encryption of the channel possible for given a microcontroller unit.

The simulation will initially assess the performance of a LR-WPAN under unencrypted channel conditions.
Afterwards, a what-if analysis will be carried out to explore the performance of a LR-WPAN under managed

encrypted channel conditions.

- 206 -

Università della Svizzera Italiana – Advanced Learning and Research Institute - MAS 2006/07 - Performance Evaluation
Performance evaluation of encryption management in a beacon enabled low-rate wireless personal area network with star topology through queuing network modelling

2/26

3 IEEE Std 802.15.4-2003
IEEE Std 802.15.4 defines the protocol and interconnection of devices via radio communication in a personal area

network (PAN). The standard uses carrier sense multiple access with a collision avoidance medium access (CSMA/CA)
mechanism and supports star as well as peer-to-peer topologies. The media access is contention based; however, using
the optional superframe structure, time slots can be allocated by the PAN coordinator to devices with time critical data.
Connectivity to higher performance networks is provided through a PAN coordinator.

This standard specifies two PHYs: an 868/915 MHz direct sequence spread spectrum (DSSS) PHY and a 2450 MHz
DSSS PHY. The 2450 MHz PHY supports an over-the-air data rate of 250 kb/s, and the 868/915 MHz PHY supports
over-the-air data rates of 20 kb/s and 40 kb/s. The PHY chosen depends on local regulations and user preference.

3.1 overview
Wireless personal area networks (WPANs) are used to convey information over relatively short distances. Unlike

wireless local area networks (WLANs), connections effected via WPANs involve little or no infrastructure. This feature
allows small, power-efficient, inexpensive solutions to be implemented for a wide range of devices.

IEEE Std 802.15.4 defines a standard for a low-rate WPAN (LR-WPAN).
IEEE Std 802.15.4 defines the physical layer (PHY) and medium access control (MAC) sublayer specifications for

low data rate wireless connectivity with fixed, portable, and moving devices with no battery or very limited battery
consumption requirements typically operating in the personal operating space (POS) of 10 m. It is foreseen that,
depending on the application, a longer range at a lower data rate may be an acceptable trade-off.

IEEE Std 802.15.4 provides a standard for ultra-low complexity, ultra-low cost, ultra-low power consumption, and
low data rate wireless connectivity among inexpensive devices. The raw data rate will be high enough (maximum of
250 kb/s) to satisfy a set of simple needs such as interactive toys, but scalable down to the needs of sensor and
automation needs (20 kb/s or below) for wireless communications.

3.2 general description
A LR-WPAN is a simple, low-cost communication network that allows wireless connectivity in applications with

limited power and relaxed throughput requirements. The main objectives of an LR-WPAN are ease of installation,
reliable data transfer, short-range operation, extremely low cost, and a reasonable battery life, while maintaining a
simple and flexible protocol.

Two different device types can participate in an LR-WPAN network:
• a full-function device (FFD) and
• a reduced-function device (RFD).

The FFD can operate in three modes serving as
1) a personal area network (PAN) coordinator,
2) a coordinator, or
3) a device.

An FFD can talk to
• RFDs or
• other FFDs,

while an RFD can
• talk only to an FFD.

An RFD is intended for applications that are extremely simple, such as a light switch or a passive infrared sensor;
they do not have the need to send large amounts of data and may only associate with a single FFD at a time.
Consequently, the RFD can be implemented using minimal resources and memory capacity.

3.3 components of the IEEE 802.15.4 WPAN
A system conforming to IEEE 802.15.4 consists of several components. The most basic is the device. A device can

be an RFD or an FFD. Two or more devices within a POS communicating on the same physical channel constitute a
WPAN. However, a network shall include at least one FFD, operating as the PAN coordinator.

A well-defined coverage area does not exist for wireless media because propagation characteristics are dynamic and
uncertain. Small changes in position or direction may result in drastic differences in the signal strength or quality of the
communication link. These effects occur whether a device is stationary or mobile as moving objects may impact
station-to-station propagation.

3.4 network topologies
Depending on the application requirements, the LR-WPAN may operate in either of two topologies: the star

topology or the peer-to-peer topology.

- 207 -

Università della Svizzera Italiana – Advanced Learning and Research Institute - MAS 2006/07 - Performance Evaluation
Performance evaluation of encryption management in a beacon enabled low-rate wireless personal area network with star topology through queuing network modelling

3/26

All devices operating on a network of either topology shall have unique 64 bit extended addresses.

Figure 1: star and peer-to-peer topology examples [2].

In the star topology the communication is established between devices and a single central controller, called the

PAN coordinator. A device typically has some associated application and is either the initiation point or the termination
point for network communications. A PAN coordinator may also have a specific application, but it can be used to
initiate, terminate, or route communication around the network. The PAN coordinator is the primary controller of the
PAN. The address can be used for direct communication within the PAN, or it can be exchanged for a short address
allocated by the PAN coordinator when a device associates. The PAN coordinator may be mains powered, while the
devices will most likely be battery powered. Applications that benefit from a star topology include home automation,
personal computer (PC) peripherals, toys and games, and personal health care.

The peer-to-peer topology also has a PAN coordinator; however, it differs from the star topology in that any device
can communicate with any other device as long as they are in range of one another. Peer-to-peer topology allows more
complex network formations to be implemented, such as mesh networking topology. Applications such as industrial
control and monitoring, wireless sensor networks, asset and inventory tracking, intelligent agriculture, and security
would benefit from such a network topology. A peer-to-peer network can be ad hoc, self-organizing and self-healing. It
may also allow multiple hops to route messages from any device to any other device on the network. Such functions can
be added at the network layer, but are not part of this standard.

3.5 functional overview

3.5.1 superframe structure
The LR-WPAN standard allows the optional use of a superframe structure. The format of the superframe is defined

by the coordinator. The superframe is bounded by network beacons, is sent by the coordinator, and is divided into 16
equally sized slots. The beacon frame is transmitted in the first slot of each superframe. If a coordinator does not wish
to use a superframe structure, it may turn off the beacon transmissions. The beacons are used to synchronize the
attached devices, to identify the PAN, and to describe the structure of the superframes. Any device wishing to
communicate during the contention access period (CAP) between two beacons shall compete with other devices using a
slotted CSMA-CA mechanism. All transactions shall be completed by the time of the next network beacon.

Figure 2: superframe structure without GTSs [2].

The superframe can have an active and an inactive portion. During the inactive portion, the coordinator shall not
interact with its PAN and may enter a low-power mode.

- 208 -

Università della Svizzera Italiana – Advanced Learning and Research Institute - MAS 2006/07 - Performance Evaluation
Performance evaluation of encryption management in a beacon enabled low-rate wireless personal area network with star topology through queuing network modelling

4/26

Figure 3: an example of the superframe structure [2].

3.5.2 data transfer model
Three types of data transfer transactions exist.
1) The first one is the data transfer to a coordinator in which a device transmits the data.
2) The second transaction is the data transfer from a coordinator in which the device receives the data.
3) The third transaction is the data transfer between two peer devices.
In star topology only two of these transactions are used, because data may be exchanged only between the

coordinator and a device. In a peer-to-peer topology data may be exchanged between any two devices on the network;
consequently all three transactions may be used in this topology.

The mechanisms for each transfer type depend on whether the network supports the transmission of beacons. A
beacon-enabled network is used for supporting low-latency devices, such as PC peripherals. If the network does not
need to support such devices, it can elect not to use the beacon for normal transfers. However, the beacon is still
required for network association.

3.5.2.1 data transfer to a coordinator in a beacon-enabled network
This data transfer transaction is the mechanism to transfer data from a device to a coordinator.
When a device wishes to transfer data to a coordinator in a beacon-enabled network, it first listens for the network

beacon. When the beacon is found, the device synchronizes to the superframe structure. At the appropriate point, the
device transmits its data frame, using slotted CSMA-CA, to the coordinator. The coordinator acknowledges the
successful reception of the data by transmitting an optional acknowledgment frame. The transaction is now complete.

Figure 4: communication to a coordinator (uplink) in a beacon-enabled network [2].

3.5.2.2 data transfer from a coordinator in a beacon-enabled network
This data transfer transaction is the mechanism for transferring data from a coordinator to a device.
When the coordinator wishes to transfer data to a device in a beacon-enabled network, it indicates in the network

beacon that the data message is pending. The device periodically listens to the network beacon and, if a message is
pending, transmits a MAC command requesting the data, using slotted CSMA-CA. The coordinator acknowledges the

- 209 -

Università della Svizzera Italiana – Advanced Learning and Research Institute - MAS 2006/07 - Performance Evaluation
Performance evaluation of encryption management in a beacon enabled low-rate wireless personal area network with star topology through queuing network modelling

5/26

successful reception of the data request by transmitting an optional acknowledgment frame. The pending data frame is
then sent using slotted CSMA-CA. The device acknowledges the successful reception of the data by transmitting an
acknowledgment frame. The transaction is now complete. Upon receiving the acknowledgement, the message is
removed from the list of pending messages in the beacon.

Figure 5: communication from a coordinator (downlink) in a beacon-enabled network [2].

3.5.3 frame structure
The frame structures have been designed to keep the complexity to a minimum while at the same time making them

sufficiently robust for transmission on a noisy channel. Each successive protocol layer adds to the structure with layer-
specific headers and footers. The LR-WPAN defines four frame structures:

• A beacon frame, used by a coordinator to transmit beacons
• A data frame, used for all transfers of data
• An acknowledgment frame, used for confirming successful frame reception
• A MAC command frame, used for handling all MAC peer entity control transfers

3.5.4 CSMA-CA mechanism
The LR-WPAN uses two types of channel access mechanism, depending on the network configuration.
Beacon-enabled networks use a slotted CSMA-CA channel access mechanism, where the backoff slots are aligned

with the start of the beacon transmission. Each time a device wishes to transmit data frames during the CAP, it shall
locate the boundary of the next backoff slot and then wait for a random number of backoff slots. If the channel is busy,
following this random backoff, the device shall wait for another random number of backoff slots before trying to access
the channel again. If the channel is idle, the device can begin transmitting on the next available backoff slot boundary.
Acknowledgment and beacon frames shall be sent without using a CSMA-CA mechanism.

3.5.5 frame acknowledgment
A successful reception and validation of a data or MAC command frame can be optionally confirmed with an

acknowledgment. If the receiving device is unable to handle the received data frame for any reason, the message is not
acknowledged.

If the originator does not receive an acknowledgment after some period, it assumes that the transmission was
unsuccessful and retries the frame transmission. If an acknowledgment is still not received after several retries, the
originator can choose either to terminate the transaction or to try again. When the acknowledgment is not required, the
originator assumes the transmission was successful.

3.5.6 power consumption considerations
In many applications that use this standard, the devices will be battery powered where their replacement or

recharging in relatively short intervals is impractical; therefore the power consumption is of significant concern. This
standard was developed with the limited power supply availability in mind. However, the physical implementation of
this standard will require additional power management considerations that are beyond the scope of this standard.

The protocol has been developed to favor battery-powered devices. However, in certain applications some of these
devices could potentially be mains powered. Battery-powered devices will require duty-cycling to reduce power
consumption. These devices will spend most of their operational life in a sleep state; however, each device shall

- 210 -

Università della Svizzera Italiana – Advanced Learning and Research Institute - MAS 2006/07 - Performance Evaluation
Performance evaluation of encryption management in a beacon enabled low-rate wireless personal area network with star topology through queuing network modelling

6/26

periodically listen to the RF channel in order to determine whether a message is pending. This mechanism allows the
application designer to decide on the balance between battery consumption and message latency. Mains-powered
devices have the option of listening to the RF channel continuously.

3.5.7 data encryption
In this standard data encryption is a security service that uses a symmetric cipher to protect data from being read by

parties without the cryptographic key. Data may be encrypted using a key shared by a group of devices (typically stored
as the default key) or using a key shared between two peers (typically stored in an individual ACL entry). In this
standard, data encryption may be provided on beacon payloads, command payloads, and data payloads.

- 211 -

Università della Svizzera Italiana – Advanced Learning and Research Institute - MAS 2006/07 - Performance Evaluation
Performance evaluation of encryption management in a beacon enabled low-rate wireless personal area network with star topology through queuing network modelling

7/26

4 literature exploration
In this paragraph, some reference papers dealing with performance evaluation of IEEE Std 802.15.4 have been

selected and reported hereunder by approach: analytical, simulative and experimental.

4.1.1 analytical approach
The performance of the slotted CSMA/CA mechanism in IEEE 802.15.4 has recently been analytically investigated

using discrete time Markov chain (DTMC) models in [3], [4], [6]. Those works have provided analytic models of the
slotted CSMA/CA mechanism in both saturation and non saturation modes, and also provided steady state solutions.
These analytical models are interesting for capturing the behaviour of the protocol in terms of throughput and access
delays

[3] proposed a new discrete time Markov chain model of 802.15.4, and analysed the throughput and energy

consumption in saturation conditions. The proposed model utilises the probability of a device in the channel sensing
states instead of the channel accessing states.

Figure 6: Markov chain model of IEEE 802.15.4 slotted CSMA/CA [3].

The key approximation is that the busy probability of the channel at the first CCA and at the second CCA are α and
β, respectively, regardless of the stages. Then, the saturation throughput is derived as

where

• n: devices in the backoff states
• τ: conditional probability that a device is at one of the first CCA states
• γ: probability that the given device transmits a packet successfully after performing CCAs twice
• lp: payload length in the number of slots
• Ts and Tc: number of occupied slots for successful transmission and collision, respectively

Incidentally, [3] utilises the channel sensing probabilities and criticises the approach of a reference work of the
authors of [6] utilising instead the channel accessing probabilities.

In [4], the key approximation in the model is the independence of the carrier sensing probability that determines

when the nodes become active to listen to the channel.

- 212 -

Università della Svizzera Italiana – Advanced Learning and Research Institute - MAS 2006/07 - Performance Evaluation
Performance evaluation of encryption management in a beacon enabled low-rate wireless personal area network with star topology through queuing network modelling

8/26

Figure 7: Markov chain model of IEEE 802.15.4 slotted CSMA/CA [4].

The saturation throughput S is expressed as the number of slots occupied for a successful packet transmission:

where

• L: packet size
• N: number of devices (each device always having a packet available for transmission)
• τ: stationary probability that the device attempts carrier channel assessment (CCA) for the first time within

a slot
• α: probability of assessing channel busy during CCA1
• β: probability of assessing channel busy during CCA2, given that it was idle in CCA1

Incidentally, [4] criticises a reference work of the authors of [6] underlining that their analytical model seems to fail
to match the simulation results.

[6] combines the theory of discrete-time Markov chains and the theory of M/G/1 queues to derive the probability

distributions of packet service times, with both downlink and uplink traffic.

- 213 -

Università della Svizzera Italiana – Advanced Learning and Research Institute - MAS 2006/07 - Performance Evaluation
Performance evaluation of encryption management in a beacon enabled low-rate wireless personal area network with star topology through queuing network modelling

9/26

Figure 8: general Markov chain model of the slotted CSMA-CA algorithm representing a nonidle state of the

node (uplink data transmission, uplink request transmission, or downlink data transmission) [6].

The packet queues in the device data buffer and request buffer are modelled as a M/G/1 queuing system, in which

the packet request queue has non-preemptive priority over the data queue at the device. (It may be argued that the
M/G/1/K system would be more accurate, but the increase in complexity would be unjustifiably high.) Both uplink and
downlink packet arrivals follow a Poisson process with the average arrival rate of λiu and λid, respectively.

The service time for uplink data packets Tud is obtained as

where:

• γu: uplink success probability; denotes the probability that an uplink transmission will not experience a
collision

• P(z): PGF that describes the time needed for the backoff countdown before a transmission attempt and the
transmission attempt itself

• Rep(z): function that represents m + 1 unsuccessful backoff countdown iterations without a transmission
attempt and requires that the backoff procedure is repeated

The service time for uplink request packets Tur is obtained as

- 214 -

Università della Svizzera Italiana – Advanced Learning and Research Institute - MAS 2006/07 - Performance Evaluation
Performance evaluation of encryption management in a beacon enabled low-rate wireless personal area network with star topology through queuing network modelling

10/26

where:

• γu: uplink success probability; denotes the probability that an uplink transmission will not experience a
collision

• PB: blocking probability
• Pur: PGF-like function that describes the time for the backoff procedure and subsequent transmission

attempt
• Repr(z): PGF-like function

The service time for downlink packets Tdd is obtained as

where:

• Tur: service time for uplink request packets
• γd: downlink success probability; denotes the probability that a downlink transmission will not experience a

collision
• Pdd(z): PGF-like function to describe the time needed to backoff countdown and the subsequent

transmission attempt
• Repd(z): function which represents m + 1 unsuccessful backoffs without the transmission attempt

4.1.2 simulative approach
In 24[8] the authors have

• evaluated the performance of slotted CSMA/CA using simulations and
• presented results

o without doing restrictive assumptions and
o taking into account some realistic features of the physical layer (propagation delays, fading, noise

effect, etc.).

4.1.3 experimental approach
In [5], after an overview of the IEEE 802.15.4 wireless networks, it has been made a preliminary performance study

via several sets of practical experiments.

[7] shows experimental results of a reference implementation.

- 215 -

Università della Svizzera Italiana – Advanced Learning and Research Institute - MAS 2006/07 - Performance Evaluation
Performance evaluation of encryption management in a beacon enabled low-rate wireless personal area network with star topology through queuing network modelling

11/26

5 queuing network model
The implementation of IEEE Std 802.15.4 is complex, and an attempt to incorporate a detailed representation in a

queuing network model would be ill-advised [1]. Therefore, a simplified queuing network model is presented in the
following under some representative operating conditions extracted from [9].

5.1 simulation assumptions
The performance evaluation of the LR_WPAN have been simulated under the following assumptions:

• number of WPANs: 1
• operation topology: star
• number of FFDs: 1, operating as a PAN coordinator
• number of RDDs: ≥ 1, ≤ 216-1
• network configuration: beacon-enabled
• channel access mechanism: slotted CSMA/CA
• BO=0, SO=0 (=> duty cycle = 100%, active portion = 0.01536s = 15,36 ms ≈ 16 ms = 16 x 1 ms)
• number of channel slots: 16
• media access: contention based
• physical layer: 2450 MHz direct sequence spread spectrum (DSSS)
• allocation of guaranteed time slots (GTSs): no
• allocated address bits: 16 (short address)
• acknowledgment: not required
• duty cycling: not required

Figure 9: network topology of the reference scenario.

5.2 channel
We propose two queuing network models for the channel:

• M/M/n model:
the channel is modelled as an array of servers, one server for each packet allotted every frame;

• load dependent:
the channel is modelled as a server with service time increasing along with its corresponding service load.

5.2.1 M/M/n model
• inter-arrival times
The literature suggests that the packet inter-arrival times distribution is Poisson (see e.g. [3-8]).

• service times
Unfortunately, to the best of our knowledge, the literature does not provide a common distribution for the service

times. We will assume they also follow a Poisson distribution.

• number of servers
In this model, we assume that packets are exactly one slot long (i.e. packet length = 1 slot). Under this assumption,

the channel (16 slot wide) can be modelled as an array of 16 servers with a single queue serving one packet per frame.

- 216 -

Università della Svizzera Italiana – Advanced Learning and Research Institute - MAS 2006/07 - Performance Evaluation
Performance evaluation of encryption management in a beacon enabled low-rate wireless personal area network with star topology through queuing network modelling

12/26

In case the system is better modelled by assuming packet lengths of 2/4/8/16 slots, the channel shall be modelled as
an array of 8/4/2/1 server(s), respectively.

Figure 10: M/M/n model of the channel.

• queue capacity
As the requests come from an undetermined number of RFDs, we will assume the queue capacity infinite.

To sum up:
• inter-arrival times distribution: Poisson
• service times distribution: Poisson
• number of servers: 16
• queue capacity: infinite

5.2.2 load dependent model
• inter-arrival times
The literature suggests that the packet inter-arrival times distribution is Poisson (see e.g. [3-8]).

• service times
Unfortunately, to the best of our knowledge, the literature does not provide a common distribution for the service

times. We will assume they also follow a Poisson distribution, with a load dependent strategy.

Figure 11: load dependent model of the channel (FESC: flow equivalent service centre).

In this model, we assume that packets are exactly one slot long (i.e. packet length = 1 slot).
If the number of packets inside the channel is only 1, the channel serves the 1 packet at a rate of 16 slot/frame (1 x

16 slot/frame = 16 slot/frame).
If the number of packets inside the channel is 2, the channel serves the 2 packets at a rate of 8 slot/frame each (2 x 8

slot/frame = 16 slot/frame).
…
If the number of packets inside the channel is 16, the channel serves the 16 packets at a rate of 1 slot/frame each (16

x 1 slot/frame = 16 slot/frame).
As the number of packets inside the channel cannot be greater than 16, we shall define the channel as a finite

capacity (16 slots) resource with finite queuing capacity.
In case the system is better modelled by assuming packet lengths of 2/4/8/16 slots, the channel shall be modelled as

reported in appendix.

• number of servers
Under the previous assumptions, the channel (16 slot wide) can be modelled as a single server.

• queue capacity
As the request come from an undetermined number of RFDs, we will assume the queue capacity infinite.

- 217 -

Università della Svizzera Italiana – Advanced Learning and Research Institute - MAS 2006/07 - Performance Evaluation
Performance evaluation of encryption management in a beacon enabled low-rate wireless personal area network with star topology through queuing network modelling

13/26

To sum up:
• inter-arrival times distribution: Poisson
• service times distribution: Poisson
• number of servers: 1
• queue capacity: infinite

5.3 microcontroller unit
Unfortunately, to the best of our knowledge, the literature does not provide an explicit queuing network model for

the FFD microcontroller unit. For the sake of simplicity, we will make the following assumptions.
• inter-arrival times
We will assume that the packet inter-arrival times distribution is Poisson.

• service times
We will assume that the packet service time distribution is Poisson. The mean value will increase with increasing

encryption level.

encryption level mean service time
No encryption 0.3 ms

… …
Maximum simulated encryption 2.5 ms

• number of servers
We will assume a single microcontroller unit.

• queue capacity
The queue capacity is implementation dependent, but we will assume this capacity equal to 7 (the maximum number

of addresses contained in a beacon frame).

To sum up:
• inter-arrival times distribution: Poisson
• service times distribution: Poisson
• number of servers 1
• queue capacity: 7

- 218 -

Università della Svizzera Italiana – Advanced Learning and Research Institute - MAS 2006/07 - Performance Evaluation
Performance evaluation of encryption management in a beacon enabled low-rate wireless personal area network with star topology through queuing network modelling

14/26

6 simulation results

Now that we have defined which models will be used for simulating the 802.15.4 protocol, the next step is to

integrate them under the JMT - JAVA MODELLING TOOL v.0.7.0 and to set parameters in order to simulate this
wireless network under the conditions explained in the previous chapter.

As described in the previous chapter, we have chosen three topologies with two models each ('load dependent' and 'load
independent') for simulating the 802.15.4 protocol. They are summarized below:

• uplink communication when a RFD wants to send a message to the FFD:
o Load dependent mode
o Load independent mode

• downlink communication when a FFD wants to send a message to a RFD:
o Load dependent mode
o Load independent mode

• joint uplink and downlink communication when both FFD and RFD want to exchange messages:
o Load dependent mode
o Load independent mode

6.1 M/M/n model, uplink mode
The first simulation represents a reduced functional device sending packets to the full functional device. Data have

to be sent through the channel and then processed by the MCU unit. The following scheme is used for simulating the
uplink mode:

Figure 12: Representation of the Uplink model.

Assuming the fact that a the channel is the bottleneck of the system, we try to figure out what is the maximum
encryption processing time possible before slowing down the entire system.

The following parameters are used for the simulations:

• Source distribution: Poisson with mean of 0.9 ms
• uplink service time distribution, load independent:

o 16 servers
o Poisson distribution with mean of 0.0625ms (16*0.0625 = 1ms)

• uplink service time distribution, load dependent:
o 1 server
o Poisson distribution with mean values of Chapter 6.1.2

• uplink queue: finite of 16 packets with waiting queue (no drop) rule
• service time MCU distribution:

o 1 server
o Poisson distribution with variable mean from 0.3ms (without encryption) to 2.5ms (full encryption)

• MCU queue: finite of 7 packets with drop rule

- 219 -

Università della Svizzera Italiana – Advanced Learning and Research Institute - MAS 2006/07 - Performance Evaluation
Performance evaluation of encryption management in a beacon enabled low-rate wireless personal area network with star topology through queuing network modelling

15/26

Uplink channel simulations, Load Independent and Load Dependent models:

 Uplink channel, Load Independent Uplink channel, Load Dependent

Q
ue

ue
 L

en
gt

h

U
til

is
at

io
n

T
hr

ou
gh

pu
t

R
es

po
ns

e
T

im
e

Figure 13: Uplink channel simulations.

- 220 -

Università della Svizzera Italiana – Advanced Learning and Research Institute - MAS 2006/07 - Performance Evaluation
Performance evaluation of encryption management in a beacon enabled low-rate wireless personal area network with star topology through queuing network modelling

16/26

Uplink MCU simulations, Load Independent and Load Dependent models:

 Uplink MCU, Load Independent Uplink MCU, Load Dependent
Q

ue
ue

 L
en

gt
h

U
til

is
at

io
n

T
hr

ou
gh

pu
t

R
es

po
ns

e
T

im
e

Figure 14: Uplink MCU simulations.

- 221 -

Università della Svizzera Italiana – Advanced Learning and Research Institute - MAS 2006/07 - Performance Evaluation
Performance evaluation of encryption management in a beacon enabled low-rate wireless personal area network with star topology through queuing network modelling

17/26

Observations:

• Uplink channel

The first observation to make is that the arrival distribution is a bit higher than the channel service time, which
explain the fact that the channel utilisation is 100% for the load dependent mode and near 100%/16 for the
independent mode which possesses 16 servers. Due to the higher arrival distribution time, the Queue Length is
also logically nearly or totally full depending on the mode used.
In this case, the channel is not related to the MCU and his behaviour remains the same even with a changing
processing time of the MCU.

• Uplink MCU
Concerning the MCU, we try to determine what is the maximum encryption level that it is possible to use
before reaching an MCU utilisation of 100%. We clearly see that when the MCU has a distribution higher than
1ms, the throughput starts to decrease, the response time increase and the utilisation is closed to saturation. The
system starts to have lower performances.

6.2 M/M/n model, downlink mode
The second simulation represents the full functional device sending packets to a reduced functional device. Data are

firstly processed by the MCU and then sent to the RFD via the channel. The following scheme is used for simulating the
downlink mode:

Figure 15: Representation of the Downlink model.

As already explained in the previous paragraph, we try also to figure out what is the maximum encryption
processing time possible before slowing down the entire system and if this result is the same than the one determined
during an uplink communication.

The following parameters are used for this simulation:

• Source distribution: Poisson with mean of 0.9 ms
• MCU service time distribution:

o 1 server
o Poisson distribution with variable mean from 0.3ms (without encryption) to 2.5ms (full encryption)

• MCU queue: finite of 7 packets with drop rule
• uplink service time distribution, load independent:

o 16 servers
o Poisson distribution with mean of 0.0625ms (16*0.0625 = 1ms)

• uplink service time distribution, load dependent:
o 1 servers
o Poisson distribution with mean values of paragraph 6.1.2

• uplink queue: finite of 16 packets with waiting queue (no drop) rule

- 222 -

Università della Svizzera Italiana – Advanced Learning and Research Institute - MAS 2006/07 - Performance Evaluation
Performance evaluation of encryption management in a beacon enabled low-rate wireless personal area network with star topology through queuing network modelling

18/26

Downlink MCU simulations, Load Independent and Load Dependent models:

 Downlink MCU, Load Independent Downlink MCU, Load Dependent
Q

ue
ue

 L
en

gt
h

U
til

is
at

io
n

T
hr

ou
gh

pu
t

R
es

po
ns

e
T

im
e

Figure 16: Downlink MCU simulations.

- 223 -

Università della Svizzera Italiana – Advanced Learning and Research Institute - MAS 2006/07 - Performance Evaluation
Performance evaluation of encryption management in a beacon enabled low-rate wireless personal area network with star topology through queuing network modelling

19/26

Downlink channel simulations, Load Independent and Load Dependent models:

 Downlink channel, Load Independent Downlink channel, Load Dependent
Q

ue
ue

 L
en

gt
h

U
til

is
at

io
n

T
hr

ou
gh

pu
t

R
es

po
ns

e
T

im
e

Figure 17: Downlink channel simulations.

- 224 -

Università della Svizzera Italiana – Advanced Learning and Research Institute - MAS 2006/07 - Performance Evaluation
Performance evaluation of encryption management in a beacon enabled low-rate wireless personal area network with star topology through queuing network modelling

20/26

 Observations:

• Downlink channel

In this case, the MCU is not related to the channel and will depend directly on the distribution arrival rate. The
behaviour of the MCU is logically the same than for the uplink mode and the system performance starts to
decrease as soon as the processing time is slower than the arrival rate.

• Downlink MCU
When the MCU processing time is quicker than the speed of the channel, the latter remains the bottleneck of the
system and overall performances remain constant. Once the mean value of the MCU service time distribution
reaches 1ms, then performances are going down and the maximum encryption level accepted is reached.

6.3 M/M/n model, joint uplink and downlink mode
Now that the Uplink and Downlink modes have been simulated separately, we can try to integrate these two models

in one in order to simulate a more realistic case, when packets are exchanged between FFD and RFD. The following
scheme will be used for simulations:

Figure 18: Representation of the joint uplink and downlink model.

In this model, packets leave from the uplink source and reach the uplink sink passing through the MCU followed by

the channel and vice versa, packets leave from the downlink source and reach the downlink sink passing through the
channel followed by the MCU. Routing probabilities have been introduced accordingly.

As we are trying to simulate the up and down communication at the same time, each arrival time distribution has to

be modified in order to be two times slower than in the previous configurations. Concerning the channel, it is
configured with the same constant service time as before. As we still try to figure out what is the maximum encryption
level allowed, the MCU service time will remain the variable parameter.

The following parameters are used for this simulation:

• uplink source distribution: Poisson distribution with mean of 1.8 ms
• downlink source distribution: Poisson distribution with mean of 1.8 ms
• MCU service time distribution:

o 1 server
o Poisson distribution with variable mean from 0.3ms (without encryption) to 2.5ms (full encryption)

• MCU queue: finite of 7 packets with drop rule
• Channel service time distribution, load independent:

o 16 servers
o Poisson distribution with mean of 0.0625ms (16*0.0625 = 1ms)

• Channel service time distribution, load dependent:
o 1 servers
o Poisson distribution with mean values of paragraphs 6.1.2

• Channel queue: finite of 16 packets with waiting queue (no drop) rule

- 225 -

Università della Svizzera Italiana – Advanced Learning and Research Institute - MAS 2006/07 - Performance Evaluation
Performance evaluation of encryption management in a beacon enabled low-rate wireless personal area network with star topology through queuing network modelling

21/26

Up-Downlink MCU and channel simulations, Load Independent model:

 Up channel, Load Independent Down channel, Load Independent

Q
ue

ue
 L

en
gt

h
C

ha
nn

el

U
til

is
at

io
n

C
ha

nn
el

T
hr

ou
gh

pu
t

C
ha

nn
el

Q
ue

ue
 L

en
gt

h
M

C
U

U
til

is
at

io
n

M
C

U

T
hr

ou
gh

pu
t

M
C

U

Figure 19: joint uplink and downlink simulations, Load Independent model

- 226 -

Università della Svizzera Italiana – Advanced Learning and Research Institute - MAS 2006/07 - Performance Evaluation
Performance evaluation of encryption management in a beacon enabled low-rate wireless personal area network with star topology through queuing network modelling

22/26

Up-Downlink MCU and channel simulations, Load Dependent model:

 Up channel, Load Dependent Down channel, Load Dependent

Q
ue

ue
 L

en
gt

h
ch

an
ne

l

U
til

is
at

io
n

ch
an

ne
l

T
hr

ou
gh

pu
t

ch
an

ne
l

Q
ue

ue
 L

en
gt

h
M

C
U

U
til

is
at

io
n

M
C

U

T
hr

ou
gh

pu
t

M
C

U

Figure 20: Up-Downlink simulations, Load Dependent model.

- 227 -

Università della Svizzera Italiana – Advanced Learning and Research Institute - MAS 2006/07 - Performance Evaluation
Performance evaluation of encryption management in a beacon enabled low-rate wireless personal area network with star topology through queuing network modelling

23/26

Observations:

• Up-downlink channel, Load Independent

Considering figure 15, we analyze these results in order to find similarities with the uplink or downlink model.
Attention should be given at the x line which represents the ratio in % regarding to the 0.3ms original.
When analyzing the channel during uplink mode, we see that the encryption level does not influence it; during
the downlink communication, the latter is affected and starts to decrease as soon as the MCU become the
bottleneck of the system.
Regarding the MCU, its throughput starts to decrease after 1 ms as expected and the addition of both up and
down utilisation tends to 100%. These results corresponds to those obtained in the single up and down mode.

• Up-downlink channel, Load Dependent
The results obtained are in general way very similar to those obtained with the Load Independent mode, which
corresponds perfectly to our expectation. The same comments can be made regarding the different parameters
of the system.

7 conclusions
The goal of this project was to study the low power wireless protocol IEEE 802.15.4, determine a model which

represents a real case application of a sensor network, and finally determine the maximum level of encryption supported
by a microcontroller before starting to slow down the speed of the entire system.

The first step has been to study the theory of this protocol, mainly by exploring the literature available today and by
understanding the different models that have been modelled and simulated. Then, three models representing the uplink
communication mode, the downlink communication mode and finally the joint uplink and downlink mode came out and
were accepted as a representation of our system. According to some research under investigation, some assumptions
have been made in order to represent a realistic case with consistent values. Finally, The JMT – Java modelling tool has
been used for performing the simulations of this low power protocol.

Then, the last step of this project has been to run several simulations. As mentioned above, the Java Modelling Tool
has been used for realizing our simulations. It appeared that some bugs still exist in the simulator and plenty of time was
spent in order to understand and fix them. But eventually, after setting up the correct parameters, we obtained some
results consistent with our predictions.

Behavioural differences between the uplink and downlink models have been reported. They are mainly due to
• deep differences in the queuing policies

the MCU has been modelled with a very limited queuing capacity whereas the RFD cloud has been modelled
with an unlimited capacity, as the distributed individual queuing capacity is normally able to sustain the
individual distributed communication needs

• the assumption that the encryption management is mainly impacting on the MCU station performance and not
on the channel station performance (see "further work").

Concerning simulations, we can make the following conclusions. The results obtained correspond well with the

theoretical predictions and the behaviour of the two systems (load dependent and load independent) gave the same
results as expected.

It is also possible to determine the maximum level of encryption, which corresponds to three times the execution
time of a packet without encryption.

8 further work
In this work, several interdependencies have been considered and analysed.
The most important interdependency not considered in this work is the dependency of the packet duration on the

encryption level.
Furthermore, IEEE Std. 802.15.4 could have been investigated more accurately in case the JMT simulator could

support the Probabilities Generating Functions for the service times reported in the "literature exploration" paragraph.

- 228 -

Università della Svizzera Italiana – Advanced Learning and Research Institute - MAS 2006/07 - Performance Evaluation
Performance evaluation of encryption management in a beacon enabled low-rate wireless personal area network with star topology through queuing network modelling

24/26

9 acronyms and abbreviations
CSMA/CA carrier sense multiple access with collision avoidance
CSMA/CD carrier sense multiple access with collision detection
DSSS direct sequence spread spectrum
FFD full-function device
MAC medium access control sublayer specifications
PGF probability generating function
PHY physical sublayer specifications
POS personal operating space
RFD reduced-function device

10 references
[1] Lazowska et al.,

Quantitative System Performance - Computer System Analysis Using Queuing Network Models
Prentice-Hall, 1984

[2] IEEE Std 802.15.4-2003
IEEE Standard for Information technology— Telecommunications and information exchange between
systems— Local and metropolitan area networks— Specific requirements— Part 15.4: Wireless Medium
Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area
Networks (LR-WPANs)

[3] Park TR, Kim T, Choi J, Choi S, and Kwon W
Throughput and energy consumption analysis of IEEE 802.15.4 slotted CSMA/CA
IEEE Electronics Letters, vol. 41, issue 18, pp. 1017-1019, Sept. 2005.

[4] Pollin S, et al.
Performance analysis of slotted IEEE 802.15.4 medium access layer.
Technical Report, DAWN Project, Sep. 2005

[5] Jin-Shyan Lee
An experiment on performance study of IEEE 802.15.4 wireless networks
2005/09/19

[6] Jelena Mišic, Shairmina Shafi, and Vojislav B. Mišic
Performance of a Beacon Enabled IEEE 802.15.4 Cluster with Downlink and Uplink Traffic
 IEEE transactions on parallel and distributed systems, vol. 17, no. 4, April 2006

[7] Tony Sun et al.
Measuring effective capacity of IEEE 802.15.4 beaconless mode
2006/04/03

[8] Koubâa A, Alves M, Tovar E, and Song YQ
On the performance limits of slotted CSMA/CA in IEEE 802.15.4 for broadcast transmissions in wireless sensor
networks.
Hurray Technical Report, 06 April 2006

[9] Fabio FABBRI
Power modelling: procedures, techniques and proposals for wireless sensor networks
ALaRI.ch, Master of Science in Embedded Systems Design, July 2006

- 229 -

Università della Svizzera Italiana – Advanced Learning and Research Institute - MAS 2006/07 - Performance Evaluation
Performance evaluation of encryption management in a beacon enabled low-rate wireless personal area network with star topology through queuing network modelling

25/26

11 appendix
The following table represents the load dependency of a 16-slotted CSMA/CA channel efficiency for different packet lengths.

service rates (slots/frame)
packet length
jobs 1 2 4 8 16

1 16/1=16 8/1=8 4/1=4 2/1=2 1/1=1
2 16/2=8 8/2=4 4/2=2 2/2=1
3 16/3 8/3 4/3
4 16/4=4 8/4=2 4/4=1
5 16/5 8/5
6 16/6 8/6
7 16/7 8/7
8 16/8=2 8/8=1
… …
15 16/15
16 16/16=1

The following table and chart represent the load dependency of a 16-slotted CSMA/CA channel efficiency for packet lengths = 1.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
E(n) 0,000 1,000 0,500 0,333 0,250 0,200 0,167 0,143 0,125 0,111 0,100 0,091 0,083 0,077 0,071 0,067 0,063 0 0 0 0
B(n) 0,000 16,000 8,000 5,333 4,000 3,200 2,667 2,286 2,000 1,778 1,600 1,455 1,333 1,231 1,143 1,067 1,000 0 0 0 0

n: stations willing to use the channel (frame by frame)
E(n): load dependent channel efficiency (frame by frame)
B(n): load dependent channel capacity (slots/frame)

- 230 -

Università della Svizzera Italiana – Advanced Learning and Research Institute - MAS 2006/07 - Performance Evaluation
Performance evaluation of encryption management in a beacon enabled low-rate wireless personal area network with star topology through queuing network modelling

26/26

16-slotted CSMA/CA load dependent channel efficiency

-0,200000

0,000000

0,200000

0,400000

0,600000

0,800000

1,000000

1,200000

0 5 10 15 20 25

n - stations willing to use the channel

- 231 -

A Meanvalue Modeling of the Performance of SCADA Field
Devices

Doctoral course on Advanced Topics of Performance Evaluation
Tutor: Prof. Giuseppe Serazzi
Submission date: April 2007

PhD Student: Julian L. Rrushi
University ID: R06567
Institution: Università degli Studi di Milano

- 232 -

1. Motivations
Embedded operating systems and communication protocols devised and implemented for use in
SCADA were not designed with security in mind. Employment of proprietary technology and some
kind of relative isolation of SCADA networks from Internet have been the motivations behind design
paths oriented exclusively towards functionality rather than functionality and security. Nevertheless,
with the advent of high connectivity of SCADA networks to the enterprise network and some times
even to Internet, and a drastic switch to standard open protocols and operating systems, security has
become one of the most critical issues in the control of critical infrastructures. Designing and
implementing security mechanisms for SCADA field devices, i.e. remote terminal units, programmable
logic controllers, or intelligent electronic devices, is quite a challenge due to their limited memory and
computational power. Thus, a given hostbased defensive approach for a SCADA field device should be
sound, i.e. be efficient in protecting the device from cyber attacks, and it should be affordable by the
device where that approach is to be deployed.

Determining the feasibility of a given defensive approach for a SCADA field device requires not only a
careful evaluation of the performance overhead induced by such a defensive capability on that specific
device, but also an estimation of the System Response Time of that device in a specific configuration of
a SCADA environment where that device is meant to operate. Such a consideration is quite important
since SCADA communications are realtime, and in some cases hard realtime. This means that when a
master station sends a request to a field device, there exists a maximum value of delay within which the
response should arrive from the field device to the master station. If the majority of replies does not
respect such a time off value, a critical infrastructure cannot be controlled and monitored correctly,
which in other words means there is a real danger for explosions and similar disasters. In support to the
statement given above we can take as an example a field device running a cryptographic algorithm. In a
SCADA environment where a master station communicates directly with a field device that device may
be able to authenticate a request that it receives from the master station, take action, build and sign a
reply, and send it to the master station before the timer at the master station goes off.

The same field device running the same cryptographic algorithm as in the previous example, in a
SCADA environment where the master station communicates with substations which in turn
communicate with field devices through one or more gateways, may not be able to respect the
expiration time set up at the master station. This is the point where performance modeling appears as a
viable solution for the estimation of the feasibility of a given implementation of a defensive approach in
a determined SCADA field device deployed in a determined configuration of a SCADA environment.
Actually little has been done to model the performance of SCADA field devices equipped with
defensive capabilities. Isolated examples include the work by Lambert presented in [1]. Lambert
describes the results of several empirical evaluations of the performance of an ARMbased field device
running cryptographic algorithms one at a time. From the measurements performed by Lambert results
that the device tested along with the respective cryptographic algorithms is usable in certain critical
infrastructure environments such as an electrical power generation plant, and not usable in other ones
such as gas facilities.

- 233 -

Nevertheless, even in this case Lambert does not take into account all factors which directly or
indirectly affect the system response time of a field device running a cryptographic algorithm. In fact
he couldn't since what he did are empirical measurements on an isolated field device. It may be useful
to consider a modeling tool such as Java modeling tool (JMT) for a more thorough estimation of the
feasibility of a given defensive technique such as signing SCADA protocol frames in a field device.
Currently most SCADA field devices are not protected by any defensive mechanism, therefore generally
most of the focus is put on inventing them. Nevertheless, at the moment of transferring such defensive
techniques from a prototype form to fully operational ones performance evaluation becomes crucial to
their success. Examples include code mutation [3] and FireBuff [4] devised to counter memory
corruption vulnerabilities, or the suite B cryptography specified by NSA to protect sensitive but
unclassified communications such as SCADA ones. In industrial control systems more than in any other
computerized environments security is tied to performance evaluation.

2. Modeling of the Performance of a Basic Industrial Control
System
The purpose of this document is to provide a first demonstration of the usefulness of JMT in modeling
the performance of field devices possibly equipped with defensive capabilities such as mitigation of
memory corruptions and/or authentication of SCADA protocol frames. For the sake of simplicity a very
basic configuration of a SCADA system was chosen for modeling. The work described in this paper is
ongoing and aims at providing modeling of the performance of arbitrary field devices along with
arbitrary configurations of SCADA environments. In this paper is described the use of JMVA to model
the performance of a field device in an environment composed of a single master terminal unit (MTU)
communicating directly with a programmable logic controller (PLC). The PLC in turn communicates
directly with a sensor to gather monitoring data, and with an actuator to perform mechanical operations
such as opening or closing valves. For more information on SCADA see [2]. The topology of our model
is depicted in Figure 1.

Our model contains a single class which we refer to as PLC class. The PLC class is closed and its
population consists of N=1 customer. Assuming that MTU communicates with field devices according
to the MODBUS protocol [5, 6], in our model a costumer is a MODBUS request message. A field
device in a SCADA environment may receive jobs either from a MTU or from a substation if any. Other
field devices may contact a given field device, but they will do so by passing through the MTU or a
substation. At any point in time the number of devices which may contact a field device is well known
in SCADA. There are 5 stations in our model, namely MTU/HMI, CPU, main memory, sensor, and
actuator. MTU/HMI represents user's think time which varies from SCADA environment to SCADA
environment. Furthermore, in most SCADA environments during certain time intervals a set of
predefined commands are sent periodically by a program. That program is conceptually similar to Cron
in Unix and its operation is controlled by a configuration file. In our model we set think time Z=6 s.

- 234 -

The four remaining stations are load independent. The types of the stations of our model are
summarized in Table 1. The MTU/HMI and the PLC are located in the control network of SCADA,
while the sensor and actuator are located in the fieldbus network. Thus, in our model the service
demand for MTU/HMI is Dk=6 s. If our field device is running an implementation of ECDSA
cryptographic algorithm, the service demand for the CPU is equal to the number of visits, i.e. the
number of instructions executed for verifying the MODBUS request received from MTU and signing
the MODBUS reply sent to MTU, times the service time of the CPU, i.e. the time it takes to the CPU to
execute an instruction.

Figure 1: Network topology of our single closed class model

For a CPU whose clock cycle is 50 MHz we consider Dk=0.035 s. The service demand for the memory
necessary to support verification of the MODBUS request received from MTU and signature of the
MODBUS reply sent to MTU is Dk=0.015 s. Furthermore, the number of visits to the sensor and
actuator is 1 and their service time is Sk=0.001 s, thus Dk=0.001 s. After running JMT under such a
configuration we get the response time of the entire system R=6.052 s. The entire system response time
in the case of a SCADA environment where the PLC runs a more powerful or less powerful processor
may be determined by performing an Whatif analysis. In such an analysis the control parameter would
be a lower or higher service demand for the CPU, respectively. As a matter of fact the number of visits
to CPU does not change. What changes is the service time Sk, i.e. the time required to execute an
instruction. Similarly, the entire system response time in the case of a SCADA environment where the

- 235 -

PLC is equipped with more main memory and larger cache, or less main memory and little cache, could
be determined by performing an Whatif analysis where the control parameter would be a lower or
higher service demand for the memory, respectively.

Station Type Location in SCADA

MTU/HMI Delay Control network

CPU Load independent Programmable logic
controller

Main memory Load independent Programmable logic
controller

Sensor Load independent Fieldbus network

Actuator Load independent Fieldbus network

Table1: Stations of our model and their locations in SCADA

References
[1] Lambert, R., “ECC and SCADA Key Management”, Presented in SCADA Security Scientific
Symposium, Miami, USA, January 2007.

[2] Stouffer, B.K., Falco, J., and Kent, J., “Guide to Supervisory Control and Data Acquisition
(SCADA) and Industrial Control Systems Security'', National Institute of Standards and Technology,
Special Publication 80082, September 2006.

[3] Simmons, Sh., Edwards, D., and Wilde, N., “Securing Control Systems with MultiLayer Static

Mutation”, presented in the 2007 meeting of the process control forum, USA, March 2007.

[4] Bellettini, C., and Rrushi, J.L., “FireBuff: A Defensive Approach Against Controldata and Pure
data Attacks”, paper submitted for peer review.

[5] MODBUS Organization, “MODBUS Application Protocol Specification V 1.1a.”, Retrieved
December 1, 2006, from http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1a.pdf

[6] Schneider Automation. “MODBUS Messaging on TCP/IP Implementation Guide V1.0a”, Retrieved
December 1, 2006, from

http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0a.pdf

- 236 -

http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1a.pdf
http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0a.pdf

Appendix
JMT was run under a Linux operating system. In what follows are given some screen shots which
document how JMT was run to model a basic industrial control system.

- 237 -

- 238 -

- 239 -

- 240 -

- 241 -

- 242 -

6 – Networks

6.1 – Capacity Planning of a Wireless Lan . 244
6.2 – Queueing Network Model of Ad-Hoc Wireless Networks 268
6.3 – Peer to Peer File Sharing . 283

- 243 -

Capacity Planning of a Wireless LAN

Sergio Vavassori

March 10, 2008

Project course: Performance Evaluation
Professor: Giuseppe Serazzi

- 244 -

2

Table of Contents

1 Introduction... 4

1.1 Why use a Wireless LAN Network Model.. 4
1.1.1 Today's Technology.. 4

1.2 So why to use this Model?... 4

1.3 The Scenario... 5

2 The Model...6

2.1 Modeling the Scenario... 6

2.2 The Basic Components.. 7

2.3 The Simulation... 10

3 The Results... 11

3.1 What if clients grow from 15 to 80.. 11
3.1.1 The Throughput.. 16

3.2 What if proxy service time grows from 0.18 up to 0.36.. 18

4 Conclusions.. 23

5 Bibliography...24

- 245 -

3

List of Figures
Figure 1: Our client-side wireless network model... 7
Figure 2: Clients parameters...8
Figure 3: Proxy Server parameters... 8
Figure 4: WLAN parameters.. 8
Figure 5: Outgoing & Incoming link parameters... 9
Figure 6: Internet parameters..9
Figure 7: Finite Capacity Region parameters... 9
Figure 8: The JMT simulator.. 10
Figure 9: Finite Capacity Region queue length.. 11
Figure 10: Outgoing link queue length...12
Figure 11: Proxy Server queue length.. 12
Figure 12: WLAN queue length... 13
Figure 13: System drop rate... 13
Figure 14: Finite Capacity Region residence time... 14
Figure 15: Outgoing link residence time.. 14
Figure 16: Proxy Server residence time... 15
Figure 17: WLAN residence time.. 15
Figure 18: Incoming link throughput... 16
Figure 19: Proxy Server throughput... 16
Figure 20: WLAN throughput.. 17
Figure 21: Finite Capacity Region queue length.. 18
Figure 22: WLAN queue length... 18
Figure 23: Proxy Server queue length.. 19
Figure 24: Incoming link queue time... 19
Figure 25: WLAN queue time.. 20
Figure 26: Proxy Server throughput... 20
Figure 27: WLAN throughput.. 21
Figure 28: Proxy Server utilization.. 22
Figure 29: WLAN utilization... 22

- 246 -

4

1 INTRODUCTION

1.1 Why use a Wireless LAN Network Model

With this brief introduction we explain why we choose a wireless LAN Network Model. It could
seem that network architecture are quite closer one each other but we will show that this assumption
isn't always true.

1.1.1 Today's Technology

In today's networks we use heavily wireless networks since they are easy to build and can cover a
wide area than standard wired networks. In addiction we don't need to take care about how many
cable to distribute, how long and where put the plug to go on line, just turn on the wireless card and
authenticate the user, if required.
However there are some important differences that most of time we don't see: the first is that wired
LAN are switched, this means that we can use all the bandwidth and we shouldn't compete for
medium access; the second is that is more difficult to sniff data over a cable that over the air, but the
most important one is that today's protocol are developed to work over a reliable channel and the
most famous protocol, TCP, must be reviewed to take care of the differences between the two
environment.
Sending data over air can be seen as an easy task but the protocol must take care about topology
changing and transient faults, as thunder or others natural phenomena that can disturb the
communication channel and we must still remember that the bandwidth we have on a cable is much
more than the one we can have with a wireless link.

1.2 So why to use this Model?

Even though there are so many obstacles on the way, the advantages introduced by using WLAN
are so big that cover most of them limitations. In addiction there are fields and applications into
which there isn't the possibility to use wired networks: we can think, for instance, on a
telecommunications between spaceships, airplanes, cargo ships, cars or at instable environments
like war scenarios, flooding or landslides.

- 247 -

5

1.3 The Scenario

This is a typical scenario of open spaces or conference rooms where the laptop (clients) are
connected at an access point an all the network is behind a Proxy Server that allow (or deny) the
request generated by clients. The presence of the router is necessary because usually there are few
lines that connect directly to Internet, there can be few IP address available and it could be that your
request doesn't need to go outside but can be satisfy by others host connected at others subnetworks.

In addiction we assume that even the Proxy Server is connected at a wireless LAN an not by wire
thus it competes with clients to transmit over the medium. This assumption can be seen as a not so
often used but if we consider that for each service like HTTP or FTP there is a Proxy and that each
Proxy could be on a different machine it turns out the convenience to use this type of linking as a
generalization of each machine.

Internet

router

Proxy
Server

Clients

- 248 -

6

2 THE MODEL

2.1 Modeling the Scenario

First of all we have to find the equivalent component that models the real one and substitute each
component with it's model; then we can “wire” the various components to take care about the
constraints and the relationship as showed into the table here below (Tab. 1).

As we can see, four different types of components
are modeled with the same item and what differs
one to the other are the parameters that we will
set. In addiction we have split the link between
the router and the Internet into two links because
there could be a difference on bandwidth into
uploading and downloading links.

Here below follows a graphical schema that
shows the notation used to build the model.

Real Component Model's Component

Laptop (Clients) Delay Station

Access Point Server Station

Proxy Server Server Station

Router Routing Station

Outgoing link Server Station

Incoming link Server Station

Internet Delay Station

Table 1: Components and their Models

Delay Station

Router Station

Access Point Proxy Server

Server Station

router

Internet
Clients

- 249 -

7

The model that we build, according to the elements described previously, is showed in Fig. 1.

One thing to notice is that the Proxy Server has the same medium as the clients to access the
Internet: thus it has to compete with others clients. This is represented with the Finite Capacity
Region that limits the number of jobs in the WLAN and into the Proxy Server.

In this model we used a Proxy Cache server to improve responsiveness and reduce response time of
web pages asked by clients; a router gives the connectivity to the Internet. The link between the
router and Internet is represented by the Outgoing link and the Incoming link: we choose this type
of representation because most of connection aren't symmetric and so there is a difference between
the upload bandwidth and the download bandwidth; this is common in European Country where the
service is carried out by the telephone cable infrastructure.

We could use a source and a sink to represent the two links but into this way we will lose the
correlation between requests and responses done by clients. The clients represents all people
connected to the access point that carry out the signal: this configuration is typical of open space,
university classes or airport lounges and allow an easily scaling of the whole infrastructure by
adding more access point where needed. Internet is represented with a Delay Station because we
couldn't see what happens inside: thus we must consider it as a black box on which we can measure
the delay between one job enter and the same job exit.

2.2 The Basic Components

This Model is parametrized assuming a starting condition of 15 clients that are connected to the
access point. As usual an access point has a maximum limit of clients that can be simultaneously
connected, typical 30 clients, and a policy to drop other's connection attempts. We will see that this
parameter is fundamental to have a maximum response time and to guarantee an upper bound.

Figure 1: Our client-side wireless network model.

- 250 -

8

Here follow a resume of all parameters used into the model:

CLIENTS:

✔ load independent strategy
✔ 15 starting clients
✔ exponential distribution with mean=8 =0.125
✔ random routing strategy (since there is only one link)

PROXY CACHE SERVER:

✔ FCFS policy
✔ waiting queue (no drop)
✔ a maximum number of 25 job in queue (finite queue capacity)
✔ load independent strategy
✔ exponential distribution with mean=0.18 =5.5
✔ probabilities routing strategy equal to 1.0 to WLAN

WLAN:

✔ FCFS policy
✔ Drop rule enable
✔ load independent strategy
✔ a maximum number of 30 job in queue (finite queue capacity)
✔ Pareto distribution with mean=0.1 and C=3
✔ probabilities routing strategy:

clients 0.5
proxy server 0.23
router 0.12

Figure 2: Clients parameters

Figure 3: Proxy Server
parameters

Figure 4: WLAN parameters

- 251 -

9

ROUTER:

✔ only probabilities routing strategy

WLAN 0.35
Outgoing link 0.65

OUTGOING LINK AND

INCOMING LINK:

✔ infinite capacity
✔ FCFS policy
✔ load independent strategy
✔ exponential distribution with mean=0.13 =7.69
✔ random routing strategy (since there is only one link)

INTERNET:

✔ load independent strategy
✔ Pareto distribution with mean=2.3 C=3.5
✔ random routing strategy (since there is only one link)

FINITE CAPACITY REGION:

✔ region capacity 45
✔ Drop enable
✔ class capacity 45

to create a finite capacity region you have to select the
wlan and the proxy server and after click on the “finite
capacity region button”.

Figure 5: Outgoing &
Incoming link parameters

Figure 6: Internet parameters

Figure 7: Finite Capacity Region parameters

- 252 -

10

2.3 The Simulation

We used as network simulator the Java Modelling Tools created at Politecnico di Milano with it
JSIMgraph utility that calculates models' behaviour using MVA algorithms.
This simulator is available at http://jmt.sourceforge.net/

With this simulator we run a first what-if simulation that calculates what happens if the number of
clients that try to attempt new connections of others activity with the wireless network, grows up to
80.

Thanks to this simulation we can examine the possibles bottlenecks and undesired behaviours of our
system, without to set up all clients, an access point and all other stuff to do the work. In addiction
we can easily change one or two parameters and re-run again the simulation to see the different
responsiveness of the system. Of course our model must be checked over a real model at the end to
be sure that our results are correct.

Figure 8: The JMT simulator.

- 253 -

http://jmt.sourceforge.net/

11

3 THE RESULTS

3.1 What if clients grow from 15 to 80

Here below are reported some graphs that show how some commons indices of a computer
networks system. These indices like queue length, queue time, response time, residence time,
utilization and throughput measures different aspects of our system and allow us to comprehend in a
deeper way what's going on into that system and to predict with a reasonable uncertain how this
system will evolve or discover some bottlenecks.

As we can see (Fig. 9) the queue of the finite capacity region grows but when the clients are 26 or
more there is an initial decrease.

As the matter of fact (Fig. 13) the system drop rate is increasing linearly and this effect is found in
all queue length monitored on WLAN, Proxy Server, Outgoing link and Incoming link (the last
one graph isn't reported because it's very closer to the outgoing one). We can easily see that around
24-28 clients the queues in these stations decreases (Fig. 10, Fig. 11, Fig. 12).

Figure 9: Finite Capacity Region queue length

- 254 -

12

Figure 10: Outgoing link queue length

Figure 11: Proxy Server queue length

- 255 -

13

If we take a look at the responsiveness of the system, that is measured by the response time and
residence time, we can observe that more or less all the stations have the same behaviour (see Fig.
14, Fig. 15, Fig. 16 and Fig. 17) but the variance is increasing as shown both by the confidence
interval range (straight vertical lines on graphs) and by the non-linear shape of the line.

A non surprising fact is that the grater variance is on the WLAN (see Fig 17). This can be explained
by looking at the number of link per component: the WLAN is the component with the most
number of link, thus, since every link as a variance and a part of jobs aren't correlated (the ones that
came from different clients) and the remaining part of are correlated (the ones that came from the
same client) its variance is very closer to a weighed average between sum of the variance that came
from every uncorrelated job and sum of the variance that came from every uncorrelated job minus
their covariance, taken by a groups of two jobs.

Figure 12: WLAN queue length

Figure 13: System drop rate

- 256 -

14

Figure 14: Finite Capacity Region residence time

Figure 15: Outgoing link residence time

- 257 -

15

Figure 16: Proxy Server residence time

Figure 17: WLAN residence time

- 258 -

16

3.1.1 The Throughput

The throughput measures how many job are carried out in a second by a station. This measure gives
a meter on how “parallelizing power” has the server not on how much time it takes to complete a
single job. For instance, if our server station model is composed by N servers the time token to do
one job is the same for every server but if we had up to N jobs the time to do all the jobs its the
same because it is balanced (if possible) on every n-server.

Figure 18: Incoming link throughput

Figure 19: Proxy Server throughput

- 259 -

17

The graph of Incoming link station (Fig. 18) show how linear can be its throughput, this is a good
behaviour of a system because allow us to predict in an easy way how it evolves with different
loads. We can notice, in addiction, that even the proxy server has a similar behaviour; instead the
WLAN show a non linear trace. That means if we duplicate the workload the responsiveness of the
station isn't the double time but can be greater or smaller, depending on the concavity of the curve.
Typically these type of curve have a concavity that generate a greater response time because there
are some long tail effects with Pareto distribution and this is in according to our assumptions done
on WLAN (see Fig. 4).

Figure 20: WLAN throughput

- 260 -

18

3.2 What if proxy service time grows from 0.18 up to 0.36

In this new what if analysis we changed the response time of the proxy server from 0.18 s. to 0.36 s.
As the matter of fact we have duplicated its response time to investigate how the entire system react
and to see if the proxy server can be considered as a possible bottleneck.

Figure 21: Finite Capacity Region queue length

Figure 22: WLAN queue length

- 261 -

19

An interesting behaviour that we can observe (see Fig. 21) is the queue length of finite capacity
region that's quite closer to the proxy server one (Fig.23). This implies there is a direct correlation
between the two queues but this correlation there isn't on the WLAN queue (Fig. 22). Thus we can
presuppose that when the service time of the proxy server grows, it dominates the WLAN inside the
finite capacity region.

In addiction must be notice that even the incoming link queue time (Fig. 24) is quite closer to the
first and the third one. An explanation of this can be found looking at the linking: the job that arrive
in the incoming link (coming from Internet) go to the WLAN but after this they go, with a
probability of 0.23, to the proxy server. Increase the service time is very similar to increase the
probability with whom the job goes to the proxy server without modifying its service time.

Figure 24: Incoming link queue time

Figure 23: Proxy Server queue length

- 262 -

20

As the matter of fact, is can be seen looking at the WLAN queue time (Fig. 25); despite the
remarkable variance we see that the average is between 3.2 and 4 but doesn't increase according to
the change of the proxy's service time.

Figure 25: WLAN queue time

Figure 26: Proxy Server throughput

- 263 -

21

Instead, if we look at the proxy server throughput (Fig. 26) is easy to see that doesn't change so
much but its not so high since it goes from 0.65 up to 0.71.

A possible reason to explain it is to look what happens at the throughput of WLAN and at its
utilization (Fig. 27 and Fig. 29): the WLAN throughput is very high and the utilization is pretty
much one.

This means that increasing proxy service time incline to overload the WLAN. Thus we can
comprehend in a better way what happens in Fig. 25: since the utilization can't be more that one (the
higher value are due to a numerical errors of the simulation) once we reach the maximum we cannot
get over and so there be two cases: the queue grow or not.

The first case can't be because we have a drop rule enable on the WLAN. This feature that can be
seen as a little and now so useful behaviour instead brings great advantages on worst case scenarios
and allow the system to have a infinite response time.

Figure 27: WLAN throughput

- 264 -

22

Figure 28: Proxy Server utilization

Figure 29: WLAN utilization

- 265 -

23

4 CONCLUSIONS

As we can see the performance of the system can vary a lot even changing by a little quantity some
parameter. This happens because the effect of one component are propagated to the others
components: if the propagation has a factor greater that one the effects on other components are
amplified otherwise they are attenuated.

The good or bad of this effects depends on which side we are looking at the system: if the system is
on heavy load conditions and we move reducing its load then a factor greater that one is positive but
is we are in a light load condition, the same factor is negative.

In addiction if we have to guarantee that our constraints are satisfied, like for instance, assume that
customer's satisfaction is reached if the response time is less than a x value, we have to put inside
the system some features like dropping that allow us to have boundaries on which rely on.

We can prevent some other type of disadvantages like service with heavy tail, as Pareto distribution,
that presents a different increment into response time depending to the length of queue with respect
to exponential distributions but before changing some component we must predict and possibly
ensure, with a certain degree of confidence, how the system will act.

Another important aspect is that if we must guarantee a certain type of availability of our service
could be useful to use some filter (like limiting to maximum number some resources) and rounding
the customers that try to access the service. As a matter of fact if our responsiveness is too low
could be that most of new customers aren't motivated to request access to the system.

- 266 -

24

5 BIBLIOGRAPHY

 Edward D. Lazowska, John Zahorjan, G. Scott Graham, Kenneth C. Sevcik
Quantitative System Performance - Computer System Analysis Using Queueing Network
Models.
Prentice-Hall, 1984.

 M.Bertoli, G.Casale, G.Serazzi.
The JMT Simulator for Performance Evaluation of Non-Product-Form Queueing Networks.
SCS Annual Simulation Symposium 2007, Norfolk,VA, US, 3-10, IEEE Press.

 M.Bertoli, G.Casale, G.Serazzi.
An Overview of the JMT Queueing Network Simulator.
Technical Report, Politecnico di Milano - DEI, TR 2007.2, 2007.

 M.Bertoli, G.Casale, G.Serazzi.
Java Modelling Tools: an Open Source Suite for Queueing Network Modelling and
Workload Analysis.
Proceedings of QEST 2006 Conference, Riverside, US, Sep 2006, 119-120, IEEE Press.

- 267 -

University of Lugano

ALaRI Institute

Performance Evaluation Project

Queuing model for Ad-Hoc wireless

networks

by

Erick Amador, Gerardo Garcia and Sebastian Moreno

Lugano, February 6th, 2007

- 268 -

CONTENTS

1 Introduction 2

2 Problem Description 3

3 Queuing Network Model 4

3.1 Parameters of the model . 4

3.2 Simulation settings . 5

4 Simulation Results 8

4.1 System Performance . 8

4.2 What if analysis . 9

5 Conclusions 12

List of Figures 13

Bibliography 14

- 269 -

CHAPTER 1

Introduction

In this work the queuing delay and throughput of a multihop wireless ad hoc network is
investigated. This kind of network is characterized by a collection of nodes that commu-
nicate with each other without any established infrastructure or centralized control, hence
the term ad hoc.

Because of power limitation issues the transmission of a packet goes through several in-
termediate nodes that forward the packets until their final destination. In this sense each
node may be a source, destination and relay.

The wireless channel is shared, therefore requiring an access control protocol besides
scheduling, accounting for an efficient MAC (Medium Access Control) protocol. Since
ad hoc networks lack a centralized control the MAC protocol should be distributed, so
that random access MAC protocols are suitable for such networks. The delay and through-
put of wireless ad hoc networks depend on the number of nodes, the transmission ranges
and traffic pattern, all speciefied by the behavior of the MAC protocol.

In this work the end-to-end delay and throughput in a random access based MAC multihop
wireless network with stationary nodes is investigated. By means of a queuing network
model the system is simulated with the Java Modelling Tools[1] for performance evaluation
of queueing networks.

The packet delay is defined as the time taken by a packet to reach its destination node
after it is generated. The average end-to-end delay is the expectation of the packet delay
over all packets and all possible network topologies. The average delay is investigated as
a function of the degree of locality of traffic, which implies the number of nodes involved
(the network density).

The maximum achievable throughput is defined as the maximum packet arrival rate at
each node for which the average end-to-end delay remains finite. The simulations do not
necessarily aim to evaluate the performance of the MAC protocol but to investigate the
overall delay according to network traffic and topology.

In the following sections the network model that is simulated is described, as well approx-
imations that are taken to evaluate the model and actually port it to the JMT simulation
tool.

- 270 -

CHAPTER 2

Problem Description

A sample wireless ad hoc network is shown on figure 2.1. Several technologies have been
standardized to support either ad hoc networking or mesh (multihop) networking, or a
combination of both, some are shown on table 2.1.

The average delay for a packet in a wireless network is the primary characteristic for
properly assesing the network performance as a whole. This specific quantity provides
insights into more detailed aspects such as network traffic, protocols performance and
general achievable transmission rate, characterizing the channel capacity as a functional
specification after considering the information theoretic aspects.

Test results are required to verify theoretical ones, so that all aspects of a design are sim-
ulated and results are assesed before the respective implementation. In this case the JMT
tool for performance evaluation is used. With this tool a queuing network is simulated
and different parameters can be changed in order to check for what if scenarios, an im-
portant aspect of the modelling for communications systems, so that different results can
be obtained depending on different network scenarios, topologies and traffic/congestion
conditions. Capacity modelling is for communication systems a primary objective, since
system capacity and performance need to be specifically design in order to meet tight
performance specifications in order to offer a reliable quality of service (QoS) and other
different aspects of communication systems.

Figure 2.1: Wireless ad hoc network

Standard Known as Operation

IEEE802.11 Wi-Fi Ad hoc

IEEE802.11s Wi-Fi Mesh

IEEE802.15.4 ZigBee Mesh

IEEE802.20 MBWA Mesh

Table 2.1: Wireless ad hoc networking standards

- 271 -

CHAPTER 3

Queuing Network Model

The network consists of n + 1 nodes, which are distributed uniformly and independently.
Each node is assumed to have an equal transmission range r(n), so that rij denotes the dis-
tance between nodes i and j. The traffic model is as follows: each node could be a source,
destination and/or relay of packets. Each node generates packets with rate λ packets/sec,
the packet generation process is assumed to be an independently indentically distributed
Poisson process. The packet size is set to be L bits. There is a probability p(n) for which
the packetis absorbed or a probability (1 − p(n)) for which the packet is forwarded to a
neighboring node. When a node forwards a packet, each of its neighbors is equally likely
to receive the packet. In this sense the network traffic is localized or unlocalized for high
or small values of p(n) respectively.

The packets are served by the nodes on first come first serve basis. No packets are dropped,
assuming an infinite buffer from each node.

This multihop wireless ad hoc network is modeled as a queuing network as shown on figure
3.1.

source source
sink

sink sink

sink

source source

source
sink

node 1

node 2

node 3

node 4

node 5

.

Figure 3.1: Network model

The stations correspond to the nodes of the wireless network.

3.1 Parameters of the model

The following parameters are defined for the wireless network model based on the work of
[2]:

• Absortion probablity p(n), probability that a packet is absorbed by a node.

p(n) =
√

log(n)/n (3.1)

- 272 -

3. Queuing Network Model 5

• Forward probability (1 − p(n)), probability that a packet is forwarded by a node.
• Time required to transmit a packet L/W , where L is the packet lenght and W is the

transmission rate.
• Packet generation rate per node λ, which is an i.i.d Poisson process.
• Effective packet arrival rate at a node is λi = λ/p(n).
• Expected number of hops traversed by a packet: s̄ = 1/p(n).
• Service time per node:

Xi =
L

W
·

λ

p(n)
+

L

W
(3.2)

As shown on the expression for the service time per node, the MAC protocol operation
is considered since the stations have a back-off timer (with exponential distribution) that
prevents all stations from transmitting at the same time instant. For this case the MAC
operation is simplified as the service time considers the number of interfering nodes that
may prevent a transmission to happen at a desired time instant. In this sense the expected
number of hops traversed by a packet is considered for the service time on each node. For
this case there is no contention for the channel as the average queuing delay is considered
for each node’s service time, simplifying the the MAC model for simulation purposes.

sink

FCFS
Queue

p(n)

packet
absorbed

forwarded
packet

1−p(n)

packet

arrival

Figure 3.2: Representation of a node

Figure 3.2 shows the representation of a node, with the parameters that characterize the
activities of packet generation, absortion and forwarding.

3.2 Simulation settings

Several settings serve as input for the simulation tool, as for example the number of nodes
use would determine the different probabilities of packet absortion or forwarding. The
number of peers also has an impact on the service time per node, table 3.1 shows these
settings for a fixed value for λ = 0.5.

Number of nodes Absortion probability p(n) Service time

1200 0.0506 0.01088

1000 0.0547 0.01014

800 0.0602 0.00931

500 0.0734 0.00781

300 0.0908 0.00651

100 0.14142 0.00454

Table 3.1: Simulation parameters according to number of nodes

- 273 -

3. Queuing Network Model 6

Under the JMT simulation tool the System response time is taken as the average end-to-
end delay within the wireless network. This time considers the time between job arrival
and departure from the network.

The simulation tool was configured primarily with a graphical interface, such that figure
3.3(b) shows the input queuing model used for simulations. Each server corresponds to a
node in the ad hoc wireless network. Figure 3.3(a) shows the configuration screen from
the JMT tool in order to configure a server (a node) and the multiclass option used since
different classes where used to show the different packtes that are generated on each node.

- 274 -

3. Queuing Network Model 7

(a) Node configuration

(b) System model

Figure 3.3: JMT configuration

- 275 -

CHAPTER 4

Simulation Results

4.1 System Performance

The queuing network model was succesfully simulated on the JMT tool. The system
behavior was observed on different levels. System response time is taken as the primary
performance metric since it shows the average end-to-end delay on the network.

The service time as shown on 3.2 is a function of the packet arrival rate, in figure 4.1 the
service time is observed for different values of λ and different number of nodes.

Figure 4.1: Service time

Figure 4.2: System throughput

Figure 4.3 shows how the system response time varies with the number of nodes for
different values of λ, {λ = 0.5, . . . ,1}, with p(n) according to 3.1. This value characterizes

- 276 -

4. Simulation Results 9

the average end-to-end delay on the ad hoc wireless network. As the network grows each
packet has to traverse a longer path over all possible topologies in order to reach its
destination, hence the delay grows with the number of peers.

(a) As a function of λ

(b) As a function of n

Figure 4.3: System response time

4.2 What if analysis

The JMT tool allows to foresee several scenarios depending on the change of one or several
parameters. In this case a what-if analysis was performed to observe the systems response
after changing key parameters as λ and p(n) (service time affected). Figure 4.2 shows how
the system response time (network average delay) changes according to several values of

- 277 -

4. Simulation Results 10

Figure 4.4: Routing node utilization graph

the service time spent for every packet on each node. In figure 4.2 the system response
time is observed for a range of values for λ, ranging from 100% to a 200%. Figure 4.2
shows the same curve for an extended range for λ.

Figure 4.5: What if analysis for service time

- 278 -

4. Simulation Results 11

Figure 4.6: What if analysis for a range of λ

Figure 4.7: What if analysis for another range of λ

- 279 -

CHAPTER 5

Conclusions

The capacity and performance of wireless networks have been a focus of research as com-
munication technologies grow in demand, deployment and cost. Ad hoc networks are
gaining considerable attention since sensor networks and other decentralized architectures
and tolopogies offer different advantages for specific applications.

The average end-to-end delay was explored after using a open queuing network model
with the JMT simulation tool. A multiclass simulation was used to be able to establish
the difference between packets that are generated from different nodes, and also different
parameters were setup according to the topology and dimension of the network.

The dimensions of the network have an impact on the overall performance, as seen on the
different relations from equations 3.1 and 3.2. The system response time was observed on
the what-if scenarios for different values of packet arrival time (λ) and service time per
node.

The JMT tool allowed us to simulate an ad hoc network that uses a random access MAC
protocol after assuming crucial facts as the inclusion on the service time of the delay
provided by other interefering nodes (the channel is indeed not accessed by all nodes at
the same time).

- 280 -

LIST OF FIGURES

2.1 Wireless ad hoc network . 3

3.1 Network model . 4

3.2 Representation of a node . 5

3.3 JMT configuration . 7

4.1 Service time . 8

4.2 System throughput . 8

4.3 System response time . 9

4.4 Routing node utilization graph . 10

4.5 What if analysis for service time . 10

4.6 What if analysis for a range of λ . 11

4.7 What if analysis for another range of λ . 11

- 281 -

BIBLIOGRAPHY

[1] M. Bertoli, G. Casale, and G. Serazzi, “Java Modelling Tools: an Open Source Suite
for Queueing Network Modelling and Workload Analysis,” QEST 2006. Third Inter-

national Conference on Quantitative Evaluation of Systems, 2006. 2

[2] N. Bisnik and A. Abouzeid, “Queuing delay and achievable throughput in random
access wireless ad hoc networks,” SECON ’06. 2006 3rd Annual IEEE Communications

Society on Sensor and Ad Hoc Communications and Networks, 2006. 4

- 282 -

ALaRI Page 1

 Peer to Peer file sharing

(Anastasia Stulova)

(Ramy Gad)

Project for the course on

“Performance evaluation”,

Master ALaRI,

January 2008

Abstract
Peer-to-peer file sharing has emerged

in many network applications, from

downloading games, songs and movies, to

even sending updates to programs. In this

paper we build a model for a file sharing

network, we get the parameter of the

model from [1], we propose three types of

users: first that contributes to the capacity

of the systems by uploading files; second

that only downloads files after stays

offline for a long time then returns back

and third type users who just enter the

system to download and exit immediately.

1 Introduction
Peer-to-peer (P2P) file sharing is now

too attractive for files like songs, movies

and games. The approach of P2P file

sharing (figure 1) differs from the

traditional client server approach (figure

2), as in a P2P file sharing a peer can be a

client and server at the same time. A peer

can request files from its peers and store,

serve files to its peers. A peer generates a

workload for a P2P application as well as

providing the capacity to process the

workload request of others. The result of

that as the number of peers in the network

increase the workload increase but also the

ability to process this workload increase.

While in case of a traditional client server

approach clients generate work load which

is processed by the servers. In peer-to-peer

file sharing networks the life time of the

peer is transitory a peer can be active for

some time doing uploading and

downloading, then go off-line, also

sometimes we can have download request

more than the available download

bandwidth. This happen in case of

congestion when there is file which has

few replications in the system and it is

requested by many peers.

Peer-to-peer file sharing is very

attractive for people who like to watch

movies, listen to songs, and play games

and use software without buying them. In

this way they share copyright materials,

they attack the intellectual property and

this is illegal in most countries.

Currently a lot of Internet Service

Providers (ISP) prevent peer-to-peer file

sharing in their networks due to copyright

problem and because peer to peer file

sharing can slow down the network. Some

file sharing software encrypts their traffic

so that they can’t be detected by the ISP.

Figure 1: Peer-to-peer topology

Figure 2 : Client/server topology

In this report we explore performance

of peer-to-peer file sharing. In section 2

we present how we construct queuing

network model of our system and the

classes of customers we have. Section 3

describes simulation with Java Modeling

- 283 -

ALaRI Page 2

Tool (JMT). In the last two chapters we

show the result of our simulation and the

conclusion of our work

2 Modeling peer-to-peer
system

In this chapter we would like to

explain how we model the system in

queuing network theory. As it was

previously said basic modeling approach is

explained in [1] [2]. We have performed

some changes of the model in order to

create complete picture of the problem.

The way we modeled the system is shown

on the figure below (see figure 3). Peer has

dual influence on the system. First of all it

interacts with the system posing queries

and performing some downloads. This

behavior is modeled in the following form.

Peers pose queries to the Indexing Server,

which duty is to route queries to the

destination file. In different architectures

of peer to peer file sharing system such

server organized in different way. We have

chosen the easiest structure for our project

“Centralized Indexing Architecture”

(CIA). It is described in more details in [1]

[2]. In such type of architecture there is

one server that is responsible for routing

and keeps information about all the

locations of the files. That's why this

architecture is named centralized (all the

information in centralized in one place).

From the indexing server queries are

routed to one of the copy of the file in the

system. For simplification we said that in

our model there are 3 different types of

files with ratio between numbers of copies

of each of them equals to 5:2:3 for the first

second and third files correspondently.

Thus we see that capacity of the first file

of the system is dominated from others. It

is easy to see also that capacity depends on

the number of copies (replications) that are

proportional to the number of peers in the

system. This fact introduces another

property of the peers to increase the

capacity of the system. Each type of the

file in the system is modeled as

independent server and has as much

service rate as much capacity it has. Thus

we have 3 servers in our models

correspondent to the file1, file2 and file3.

After posing query peer can either

continue to pose the queries or go to off-

line or be invisible for the certain amount

of time in the system. Moreover between 2

consecutive queries that peer sends to the

system without to go to off-line state it

might be various amount of time during

that user is not active. Such time in [3] is

named "think time", and such behavior of

the system can be modeled as following.

We have 2 delay stations that correspond

to "on-line" and "off-line" state of the

system. After query was processed there

are certain probabilities that peer will go to

one of those two states. Each of the station

has different think time, this is obvious

that user in off-line state has bigger delay

than who stays on-line.

Figure 3 : System model in queuing network

2.1 Classes of user
We have decided that we have 2

closed model classes of users. We name

them "freeloader" and "non freeloaders" as

it is also defined in [1]. First class

corresponds to the peers that only use

resources of the system, others also share

file that allows increasing capacity of the

system. It is observed that ratio between

first and second one in the population is

7:3. It was also mentioned in [1] that non

free-loaders have shorter think time, and

smaller probability to go off-line.

We have decided that to model peer to

peer system with constant number of the

population will not be complete, because

- 284 -

ALaRI Page 3

during life time its number varies. Such

thing we are going to model in the

following way. We add open class of user

that represents variation of the system

population. And we would like to know

how it is affected behavior of the system.

We said that those users that belong to the

open classes don't increase the capacity of

the system; they can stay for the certain

amount of time in the system and their

behavior is very similar to that of the

freeloaders.

Figure 4 : JMT model of the system

3 Simulations with JMT
Here, it will be explained how we

simulate our model with JMT [4] and how

we parameterized our model. The model of

the system in JMT is represented on figure

4. You can find all the components that

were described in the previous chapter.

Most of the parameters of the system were

taken from the numerical experiment that

is described in [1]. List of all the

parameters used in the simulation is

represented table 1.

Table 1 : Model Parameters

Symbol Name value

N1 number of the population of

the non free loaders

30

N2 number of the population of

the free loaders class

70

λon-line1 think time for on-line station

for the non free loaders class

1/30

λon-line2 think time for on-line station

for the free loaders class

1/300

λon-line3 think time for on-line station

for the open model class

19/3000

λoff-line1 think time for off-line station

for the non free loaders class

1/43200

λoff-line 2 think time for off-line station 1/43200

for the free loaders class

λoff-line 3 think time for off-line station

for the open model class

1/43200

µq Service rate of the indexing

server

100

µs1 Service rate of downloading

of the file 1

0.0988

µs2 Service rate of downloading

of the file 2

0.242

µs3 Service rate of downloading

of the file 3

0.1613

Pf1 probability of that request is

associated with first file type

0.5

Pf2 probability of that request is

associated with second file

type

0.2

Pf3 probability of that request is

associated with third file type

0.3

Poff1 probability of going to off-

line for the non free loader

class

0.1

Poff2 probability of going to off-

line for the free loader class

0.019

Poff3 probability of going to off-

line for the open model class

0.181

Psink probability of leaving the

system for the open model

class

0.8

Now we will explain how we obtained

those parameters in more details. We have

chosen number of the population will

follow ratio that was explained before (it

was found that for each 3 of non free

loaders in file sharing system there are 7

free loaders) and for the simplification we

assume to have population of 30 of non

freeloaders and 70 freeloaders. Thinking

time for the closed classes was taken from

the experiment [1]. Thinking time of the

open model classes is assumed to repeat

behavior of the freeloaders with 0.9

probability and non freeloaders with 0.1

probability.

λon-line3=0.1* λon-line1+0.9* λon-line2
 = 1/3 * 1/10 +1/3000* 9/10 = 19/3000

The same way we compute λoff-line3

and probability to go in off-line or on-line

state for open model class. Service rate for

the indexing server with CIA architecture

equals to the capacity of the central server,

and was taken from the same experiment.

We supposed that popularity of routing

queries to the files in the system follow

- 285 -

ALaRI Page 4

ratio 5:2:3 for the first, second and third

files. Thus it is clear that we have 50% of

request that are posed to the file one, 20%

to the second and 30% to the third. From

here probability Pf1, Pf2, Pf3 that query is

associated with file1, file2, file3 is equal to

the 0.5, 0.2, 0.3 respectively. We suppose

also for simplicity that our shuffle cluster

of the system equal to 0. This means that

file popularity and file replication fractions

are equals for any file. We know that

among 10 request 5 goes to file1, 2 to the

file2 and 3 to the file 3. Thus the same

holds for the replications of the file:

among 10 copies of files 5 belong to the

file 1, 2 to the file 2, 3 to the file 3. We use

the same equations that are defined in [1]

to derive service rate for each file server.

Where H is a constant, in our system

we set it to 1/20. This corresponds to a file

download time of approximately 150 sec.

In our simulations we keep this constant

the same for any file, so that we said that

files size are more or less equals. K is

normalization factor

 Here j is number of requests for the

file. With fraction of the request defined

earlier K=1/ (1/5+1/2+1/3) =0,968.

 i is the number of copies of the file.

With fractions for file's replication defined

before: ifile1=0.5*N1, ifile2 = 0.2*N1,

ifile3=0.3*N3

Thus

μs1=N1*H*K/0.5*N1=H*K/0.5

μs2=N1*H*K/0.2*N1=H*K/0.2

μs3=N1*H*K/0.3*N1=H*K/0.3

Probability to go off-line for the

closed classes was also defined in the

experiment. For the open class we have

said that in the most cases after

downloading customer leave the system

(with 0.8 probability) With 0.181 it goes

off-line and 0.019 to on-line state.

4 Simulation results

We have made 2 different

experiments: first we monitored the

performance of the free different file

servers, second was to make "what if"

analysis for the system exploring influence

of variation of arrival rate of the open

model customers.

4.1 Performance of the file
servers

First we were looking at the

performance of each file server by

monitoring their queue length, utilization

and response time. The results are

represented on the figure 5, 6 and 7

correspondently. From those plots we can

see that performance is scaled with

probability of routing to the servers even if

their capacity is bigger (remember, that the

size of the files are equalized). As we can

see also utilization of the server

correspondent to the most popular file is

almost 100% that means that this file is the

bottleneck of the system. The most free

resource is file 2, in spite of it has less

copies. The reason is it has less probability

of routing.

- 286 -

ALaRI Page 5

Figure 5 : Response time of the file servers

a) file1 b) file2 c) file3

Figure 6 : Utilization of the file servers

a) file1 b) file2 c) file3

Figure 7 : Queue length of the file servers

a) file1 b) file2 c) file3

4.2 "What if" analysis
Because we introduced additional

open model class in order to represent

variability of the population of the whole

system. We decided that it could be

interesting how this variability affects our

system. We performed "what if" analysis

in order to measure different performance

indexes of the system depending on the

different arrival rate of the open model

class, and that means different variability

of the population. We made simulations

with JMT, record all the results and then

plot it using Microsoft Excel.

Average value = 53.2078

Average value = 4.7551

Average value = 8.8324

Average value = 0.9894

Average value = 0.1332

Average value = 0.3192

Average value = 4.0119

Average value = 0.1446

Average value = 0.4123

- 287 -

ALaRI Page 6

Figure 8 : Utilization of the indexing server

Figure 9 : Throughput of the system

Figure 10 : Response time of the system

We first simulate the system without

the open class (this is equivalent to arrival

rate equal to 0)

We notice that the system response

time (figure 10) and the system throughput

(figure 9) increase as the arrival rate

increase. But we notice that it increases

tremendously after reaching an arrival rate

of 0.1. It is good to increase the throughput

of the system but the peers will suffer from

a very long response time and that is not

good for the peers. Also that the increase is

not linear, there is a point where the

increase runs up very fast.

We can see in figures 8, 9 and 10 that

performance indexes change is not

monotonic. Look at the figures, where we

plot response time analysis. We can find

some discrepancies. For example for

arrival rate of 0.001 the response time

increases by factor of 2, and when returned

to the previous values. As outcome of that

we can tune the arrival rate to find the

optimal performance point.

5 Conclusions
In this work we create a queuing

network model for peer to peer file sharing

system. We investigate the effect of

changing the system capacity and work

load on the performance indexes of the

system using JMT.

6 References
[1] Modeling Peer to Peer file sharing systems,

Zihui Ge, Daniel R. Figueiredo, Sharad Jaiswal,

Jim Kurose, Don Towsley. IEEE INFOCOM 2003

[2] New Scheduling Policies for Multiclass

Queuing Networks: Applications to Peer-to-Peer

Systems. Ioannis. Ch. Paschalidist, Chang Sut.

Michael. Proceeding of the 42nd IEEE Conference

on Decision and Control Maui, Hawaii USA,

December 2003

[3] Quantitative System Performance, Computer

System Analysis Using Queuing Network Models,

Edward D. Lazowska, John Zahorjan, G. Scott

Graham, Kenneth C. Sevcik. Prentice-Hall, Inc., in

1984

[4] Java modeling tools: http://jmt.sourceforge.net

Arrival time

Arrival time

Arrival time

- 288 -

http://www.ieee-infocom.org/2003/papers/53_03.PDF
http://www.ieee-infocom.org/2003/papers/53_03.PDF
http://www.ieee-infocom.org/2003/papers/53_03.PDF
http://www.ieee-infocom.org/2003/papers/53_03.PDF
http://ieeexplore.ieee.org/iel5/8969/28479/01272841.pdf
http://ieeexplore.ieee.org/iel5/8969/28479/01272841.pdf
http://ieeexplore.ieee.org/iel5/8969/28479/01272841.pdf
http://ieeexplore.ieee.org/iel5/8969/28479/01272841.pdf
http://ieeexplore.ieee.org/iel5/8969/28479/01272841.pdf
http://ieeexplore.ieee.org/iel5/8969/28479/01272841.pdf
http://ieeexplore.ieee.org/iel5/8969/28479/01272841.pdf
http://www.cs.washington.edu/homes/lazowska/qsp/
http://www.cs.washington.edu/homes/lazowska/qsp/
http://www.cs.washington.edu/homes/lazowska/qsp/
http://www.cs.washington.edu/homes/lazowska/qsp/
http://www.cs.washington.edu/homes/lazowska/qsp/
http://jmt.sourceforge.net/

7 – Protocols

7.1 – Modelling of BitTorrent Peer-to-Peer protocol 290
7.2 – Performance Evaluation of Tairona VoIP Server 310

- 289 -

An Empirical Performance Evaluation and

Modelling of BitTorrent peer-to-peer File Sharing

System using Queuing Network Models

Prabhat Saraswat & Prashant Batra

5th Feb 2007

Final version

Advanced Learning and Research Institute
ALaRI - USI

Lugano, Switzerland

1

- 290 -

Contents

1 A Brief Introduction to P2P File Sharing Systems 4

2 Queuing Network Models 4

3 The BitTorrent Protocol - A brief description 5

4 Experiment Methodology 7
4.1 Description of the log file structure 8
4.2 Text Scanner for the log files 10

5 Results and Analysis 10

6 Proposed Queuing Model 16

7 Analysis and Modelling using JMT 17

8 Conclusions 19

List of Figures

1 Graph showing the bandwidth usage of various files while
downloading, X axis corresponds to the time, Y axis corre-
sponds to the Instantaneous bandwidth for every piece . . . 11

2 Graph showing the bandwidth usage of various files while
uploading, X axis corresponds to the time, Y axis corresponds
to the Instantaneous bandwidth for every piece 12

3 Graph showing the bandwidth usage while downloading and
seeding, notice that seeding continues well after the down-
loading stops, seeding - red, downloading - green 13

4 Graph showing the total data downloaded and seeded, green
- downloaded data, red - seeded data 14

5 Implemented model in JMT 17
6 Simulation results for the sizefactor = 1.8 18
7 Simulation results for the sizefactor = 1.5 19
8 Simulation results for the sizefactor = 1.4 19
9 Simulation results for the sizefactor = 1.0 20

2

- 291 -

Abstract

It has been observed that the maximum bandwidth usage incurred
during the file transfers on the internet mainly corresponds to the large
chunks of data, which typically consists of continuous media, for exam-
ple videos, movies or the sound files. Data packages like bulky software
executables also contribute to the bandwidth usage.

Peer to peer file transfer systems have now become enormously
popular on internet due to several advantages. One of the main ad-
vantages is the reduced over head on one centralized entity as the file
transfer process is distributed. However some of the traditional file
transfer systems do not scale well with the number of clients.

BitTorrent is an improved peer-to-peer(P2P) file distribution proto-
col. Several free implementations of this protocol exist. This protocols
has various mechanisms to award the peers who are actively partic-
ipating in the file transfer process. These incentive mechanisms and
various other mechanisms make BitTorrent scalable and robust. We
would investigate these aspects in detail in the later chapters.

In this project we have tried to understand the BitTorrent proto-
col and have performed an experiment to understand the performance
and incentive mechanism imbibed in the protocol. The characteristic
graphs are studied to find out the patterns of similarity and relation-
ships between seemingly disjoint parameters. Through the medium of
empirical observation we have tried to characterize various parameters
of the BitTorrent system so that it could be modelled using a queuing
network model. We have also tried to find the asymptotic bounds on
the performance. The study is further purported by the comparison
between the simulation and experimental results mentioned towards
the end.

3

- 292 -

1 A Brief Introduction to P2P File Sharing Sys-
tems

It has been an age old adage that the sum is greater than its parts, p2p model
supports this point of view and relies primarily on the computing power and
the bandwidth of the participants in the network rather than concentrating
it in a relatively low number of servers. P2P networks are typically used for
connecting nodes via largely ad hoc connections.

The motivation behind basing applications on peer-to-peer architectures
derives to a large extent from their ability to function, scale and self-organize
in the presence of a highly transient population of nodes, network and com-
puter failures, without the need of a central server and the overhead of its
administration. Such architectures typically have inherent characteristics
like scalability, resistance to censorship, centralized control, and increased
access to resources. Administration, maintenance, responsibility for the op-
eration and even the notion of ”ownership” of peer-to-peer systems are also
distributed among the users, instead of being handled by a single company,
institution or person. Finally peer-to-peer architectures have the poten-
tial to accelerate communication processes and reduce collaboration costs
through the ad hoc administration of working groups (SADS02).

The popularity of peer-to-peer multimedia file sharing applications such
as Gnutella and Napster has created a flurry of recent research activity into
peer-to-peer architectures. However it should not be believed that all the file
sharing protocols are equally resistant to the complications caused by the
increased access of resources. Not all protocols scale well. A very important
consideration in p2p file sharing systems is the presence of free riders. Due
to the adhoc nature of the connections, it is possible for some of the peers
to only download a file without themselves contributing files to the network.
This hampers the performance of the network, as this leads to less number
of copies of the file, which is not really desired. Protocols like BitTorrent
provide various incentive mechanisms, that persuades the peers to share in
order to get better performance from the network.

2 Queuing Network Models

It is often imperative to understand the behavior of certain systems under
certain conditions and certain assumptions. As it is not always possible to
perform live tests on the systems, we model the system as an abstraction of
the important details, leaving out the mass of irrelevant details. Models are
very helpful as when once they are made, the can be parameterized to reflect
any of the alternatives under study. The parameters can be tuned to any

4

- 293 -

chosen value and the models can be simulated under pre-fixed assumptions.
These assumptions can also be tuned to other values.

Modelling using the queuing networks is a typical approach to model
various systems as a network of queues, each of which can be analyzed ana-
lytically. It is also referred to as the mathematical study of waiting lines (or
more simply queues). The theory enables mathematical analysis of several
related processes, including arriving at the (back of the) queue, waiting in
the queue (essentially a storage process), and being served by the server(s)
at the front of the queue. The theory permits the derivation and calculation
of several performance measures including the average waiting time in the
queue or the system, the expected number waiting or receiving service and
the probability of encountering the system in certain states, such as empty,
full, having an available server or having to wait a certain time to be served.1

However, it should be noted that all the prior attempts to model the
p2p file sharing systems, have modelled the p2p systems as a simple fluid
model(QUSRI04), as it is considered to be very amenable for analysis. How-
ever, we are using the Java Modelling Tools designed at the performance
evaluation lab at Politecnico di Milano(JMT07), which provides quite a lot
of functionalities to design load dependent classes. This enables us to make
a queuing network model for BitTorrent. Following sections would explain
the model in detail.

3 The BitTorrent Protocol - A brief description

Before moving to the description of experiment and the methodology used,
it would be better to discuss about the BitTorrent protocol. This would be a
brief description as the complete protocol is very complex and long. A first
hand overview would be provided which would enable the reader to be able
to appreciate various decisions taken during the experimentation. It would
also be helpful to understand and appreciate the results and the analysis
presented in the next section.

BitTorrent is a P2P application whose goal is to facilitate fast downloads
of popular files. We are trying to describe here how BitTorrent operates
when a single file is downloaded by many users. Typically the number of
simultaneous downloaders for popular files could be of the order of a few
hundreds while the total number of downloaders during the lifetime of a file
could be of the order of several tens or sometimes even hundreds of thou-
sands. The basic idea in BitTorrent is to divide a single large file (typically
a few 100 MBytes long) into pieces of size 256 KB each. The big files are

1Source - Wikipedia

5

- 294 -

divided into much bigger pieces, typically of 1 MB. The set of peers at-
tempting to download the file do so by connecting to several other peers
simultaneously and download different pieces of the file from different peers.
To facilitate this process, BitTorrent uses a centralized software called the
tracker.

In a BitTorrent network, a peer that wants to download a file first con-
nects to the tracker of the file. The tracker then returns a random list of
peers that have the file. The downloader then establishes a connection to
these other peers and finds out what pieces reside in each of the other peers.
A downloader then requests pieces which it does not have from all the peers
to which it is connected. But each peer is allowed to upload only to a fixed
number (default is four) at a given time. Uploading is called unchoking in
BitTorrent. Which peers to unchoke is deter- mined by the current down-
loading rate from these peers, i.e., each peer uploads to the four peers that
provide it with the best downloading rate even though it may have received
requests from more than four downloaders. The downloading rate is strictly
governed by the amount of data which has been uploaded untill now. Thus
inorder to get a good bandwidth, one should contribute to the network by
seeding.

This mechanism is intended to deter free-riding. BitTorrent distinguishes
between two types of peers, namely downloaders and seeds. Downloaders
are peers who only have a part (or none) of the file while seeds are peers
who have all the pieces of the file but stay in the system to allow other peers
to download from them. Thus, seeds only perform uploading while down-
loaders download pieces that they do not have and upload pieces that they
have. Ideally, one would like an incentive mechanism to encourage seeds to
stay in the system. BitTorrent currently has such a feature. In practice, a
BitTorrent network is a very complicated system. There may be hundreds
of peers in the system. Each peer may have different parts of the file. Each
peer may also have different uploading/downloading bandwidth. Further,
each peer only has partial information of the whole network and can only
make decisions based on local information. In addition, BitTorrent has a
protocol (called the rarest-first policy) to ensure a uniform distribution of
pieces among the peers and protocols (call the endgame mode) to prevent
users who have all but a few of the pieces from waiting too long to finish
their download(QUSRI04).

We have tried to experiment with the varying load and tried to charac-
terize this behavior of the system. The reults and anaylsis are mentioned in
the later sections. A queue based model is also explained later.

6

- 295 -

4 Experiment Methodology

Various BitTorrent clients are available on the internet to download the files
from the .torrent files. Since BitTorrent is a p2p program, you actually start
uploading as soon as your first chunk of data arrives. There are clients for
various platforms, some of them are freewares while some of them charge
small licensing fee for their usage.

After checking the log files of various clients, we found out that Azureus
Java client(AZR07), enables the user to obtain detailed low level logs, down
to the protocol level. This is what was required, so we chose to use this tool.
The downloading and installing of the tool was easy. It is a java based tool,
thus making it platform independent.

It allows the user to choose various parameters to be monitored. Various
levels of logging are mentioned. We chose the debugging-expert user mode,
which allowed the tool to dump all the information it could generate, in the
log files. The next decision that we had to take was concerned with the
files to download. This is an important criteria as BitTorrent fragments the
files into pieces of different sizes according to their total file size. Their are
typically two piece sizes, the most common fragment size if 256 K for the
files of typically sizes around 700 -1400 MBś, while for the files of the order
of 4 GBś or so, the fragment size is around 1 MB. We tried to download the
torrent information files of two files of around 4 GB’s (typically the DVD
versions of movies). The other files were of mixed sizes. The log files allowed
tracking of the data of each file separately. It also allowed us to evaluate
the complete system response.

Thus we had 7 files to be downloaded. The files to be downloaded were:

1. File Name: Motorcycle.Diaries.DVD.Seeders.torrent
File Size: 4.36 GB (4681369600 bytes)

2. File Name: The Fifth Element HD-DVD.torrent
File Size: 4.33 GB (4644930112 bytes)

3. File Name: Forrest.Gump.1994.DVDRip.XviD.torrent
File Size: 1.36 GB (1463422408 bytes)

4. File Name: The.Amazing.Race.S10E01.PDTV.X.torrent
File Size: 685.8 M (719116288 bytes)

5. File Name: Pearl Jam - Complete Discography.torrent
File Size: 624.48 M (654815785 bytes)

7

- 296 -

6. File Name: Big Fish_Movie_English.torrent
File Size: 348.27 M (365183033 bytes)

7. File Name: Smashing Pumpkins - 1993 - Siamese Dream.torrent
File Size: 142.57 M (149495088 bytes)

The torrent files for all the aforementioned media files were downloaded
before hand and the download for all the files was started simultaneously.
The maximum size of the log file was kept as 250 MBś, as we had suspected
that the process of downloading will take alot of time, some days typically.
After one file of 250 MBś was made, the tool automatically copied it in
the form of a backup file and started logging into another file in the same
directory.

We kept the process running for 6 days, even though most of the files
were completely downloaded much before, we wanted to observe the seeding
behavior of BitTorrent. There was an inevitable and unprecedented shut-
down of the machine after 3 days of download, which led to the redoing of
the whole process again. However we were able to obtain two log files (one
normal and the other backup containing old logs).

4.1 Description of the log file structure

The log file dumped by azureus when all the debugging options were turned
on, can be seen below: (a part of it)

16:14:22.674 0 net Received [BT_PIECE data for piece
#723:0->16383] message .
.TorrentDLM: ’Smashing Pumpkins’; Peer: L: 24.80.122.132: 5216
[Torrent 1.6.0]

Some of the fields are self explanatory. The first field is the time stamp,
which precedes every message. The time stamp has a resolution of the
order of 100th of the milisecs, that allows for the better accuracy in the
calculations. The Received [BT PIECE refers to the fact that a fragment is
received. The number 16323 refers to the pieceś sequence number, which
allows for the recombination when all the the pieces are downloaded. The
name of the torrent file is also mentioned. Following the name of the torrent,
is peerś IP address which supplied that particular fragment. The BitTorrent
client used by the peer is also mentioned.

8

- 297 -

There are few other messages which are also important. They are shown
below:

16:14:23.034 0 net Received [BT_REQUEST piece
#1093:458752->475135] message
TorrentDLM: ’Smashing Pumpkins’; Peer: L: 24.253.30.246: 19906
[Azureus 2.5.0.2]

This indicates that the peer is requesting for the pieces with the sequence
numbers in the given range, here the range is 458752->475135. If a piece
is available with the client, it replies back with the BT HAVE message as
described below.

16:14:22.846 0 net Sent [BT_HAVE piece #363] message
. .
TorrentDLM: ’Smashing Pumpkins’; Peer: L: 67.182.240.99: 60048
[Azureus 2.5.0.2]

This means that the client is answering the query of the peer and replies
that it has a piece (with sequence number in the desired range) with it.
Thus is can be downloaded from this client. As soon as the peer receives
this message, it starts downloading the piece.

16:14:22.721 0 net Sent [BT_REQUEST piece #580:81920->98303]
message .
TorrentDLM: ’Smashing Pumpkins’; Peer: L: 67.182.240.99: 60048
[Azureus 2.5.0.2]

This means that the client is requesting for the pieces with the sequence
numbers in the given range from the Peer.

16:14:23.221 0 net Received [BT_HAVE piece #458] message . . .
. .
TorrentDLM: ’Smashing Pumpkins’; Peer: L: 24.239.217.250: 24960
[Torrent 1.6.0]

9

- 298 -

After a request for a piece is recieved, the peer replies using the BT HAVE
message indicating the identification number of the piece it is having and
thus it is available for download. As soon as the client receives this message,
it begins to download the piece.

4.2 Text Scanner for the log files

A text scanner using awk and sed was implemented to extract the relevant
details from the log files. Since the log fileś size was huge, of the order of
around half of GB, it was impossible to do the text analysis as the process
itself was taking alot of time. The log file was stripped of the useless details.

Since we had to investigate for the bandwidth performance and the incen-
tive mechanisms, the packet and the timing information was of the critical
importance to us. An awk script was written for calculating the instanta-
neous bandwidth consumed for downloading each piece. Another awk script
was written to calculate the cumulative size of the data that was downloaded
and seeded. A text scanner was written to differentiate between the data
concerning with different load files.

We are not showing the awk files here, they could be found in the at-
tached appendix for reference. A sample test file is also provided. The
scripts to plot the data into graphs and then finally exporting them as an
image file are also attached. We have used GNUPLOT in our analysis. 2

5 Results and Analysis

The results from the aforementioned experiments are shown in Figure 1.
Figure 1 shows very clearly the incentive mechanisms in the BitTorrent pro-
tocol. The graph shows the values of instantaneous bandwidth while the
files are being downloaded. As it can be seen clearly, the top two lines cor-
respond to the bulky files (refer to the file list mentioned in the previous
section, the top two lines correspond to file 1 and file 2 respectively). One
possible reason can be speculated for this kind of behavior, which could be
an explanation for this spectacular high jump in the graphs. Each torrent
is defined by a factor known as torrent health, which denotes the number of
seeders present for that particular file. Whenever the health factor is high,
more number of seeders are present to download from, thus leads to higher
bandwidth. It should be noted that this is actually an arbitrary function
of time and it changes quite randomly over time. It is related to the peers

2We encountered a problem due to the huge size of our data. We were not able to use
the open office or Microsoft EXCEL to plot the graphs as the maximum samples allowed
are 65000, while in our implementation the total samples were around 20 times of that.
Thus we resorted to the tried and tested GNUPLOT.

10

- 299 -

shutting down and coming up, which obviously is unpredictable. Since the
measurements were taken over a period of 6 days, the sudden changes, be-
cause of this, should not be visible in the graph.

Thus the torrent health factor (seemingly) is not responsible for the high
bandwidths of downloads as seen in the graph. The only other factor which
differentiates between the other cases, is the size of the fragments. Thus
it is possible that the size of the fragment plays a role in the high speed
downloads. We have defined a factor, bandwidth factor which corresponds
to the high bandwidth of the downloads. This directly comes from the slope
of the line. This could be put down as:

bFactor ∝ SoF (1)

where SoF refers to the size of fragment

Figure 1: Graph showing the bandwidth usage of various files while down-
loading, X axis corresponds to the time, Y axis corresponds to the Instan-
taneous bandwidth for every piece

11

- 300 -

It should also be seen that there are some outliers which corresponds to
the meteoric momentary increase due to increase in the numbers of peers
and seeders. Thus the bandwidth is also dependent on the health factor.
But this is momentary and it should be a weak function of the same. But
for the sake of mathematical tractability we can write it as:

bFactor ∝ SoF ×NofSeeders (2)

where NofSeeders refers to the number of seeders present at that
point of time

It would be also interesting to see the uploading statistics/graph. Figure
2 shows the instantaneous bandwidth values when the client is seeding the
files it is downloading.

Figure 2: Graph showing the bandwidth usage of various files while upload-
ing, X axis corresponds to the time, Y axis corresponds to the Instantaneous
bandwidth for every piece

It can be clearly seen that the value of the slope of the lines is much
more than in the upload curve. The only difference between the upload case

12

- 301 -

and the seeding case is that, in the seeding case one keeps on uploading even
after the download has been finished, thus the size of the total uploaded data
increases with time, linearly (as seen from the graph). There are not any
other subtle differences between both of the graphs. The common regions
in the graph can be shown when both of them are plotted together. Figure
3 elucidates this concept:

Figure 3: Graph showing the bandwidth usage while downloading and seed-
ing, notice that seeding continues well after the downloading stops, seeding
- red, downloading - green

We can also look at the plots of the cumulative growth of the size of data
downloaded and uploaded by the peer.Figure 4 shows the downloaded and
seeded data. The downloaded data is represented by the green worm and
the seeded data is indicated by the red worm. The curve as shown in Figure
4 can be broken down into two linear segments. Thus it can be expressed in
terms of a piecewise linear function. As it can be seen that until the data is
being downloaded the slope of both the uploaded and seeded are the same.
After the data is downloaded, the seeding rate increases as can be seen from
the graph. This can be attributed to the fact that since there are multiple

13

- 302 -

downloads happening from the same seeder, the total size of files uploaded
may quite well exceed the total size of files stored at the client (duplicate
uploads).

If we try to correlate between the graphs of bandwidth and the cumula-
tive uploaded size of data , it can be seen that the slope of the bandwidth
is also a function of the amount of data uploaded. If the amount of data
uploaded is more, one will get both good uploading speed and downloading
speed. Thus the equation contains three parameters now. Equation 2 can
be rewritten as.

bFactor ∝ SoF ×NofSeeders× dataSeeded (3)

where dataSeeded is the total data seeded by the client

Figure 4: Graph showing the total data downloaded and seeded, green -
downloaded data, red - seeded data

We also did measurements on the number of requests made by the client
for the pieces of data. It was interesting to observe and as it is also consis-
tent with the protocol, the order in which a BitTorrent client receives the

14

- 303 -

pieces. This totally depends upon the other peers, all the peers when they
have finished downloading a piece they send this BT HAVE message to all the
peers, thus if another peer needs those pieces, they get it from those peers.

It was observed that for a large number of peers (as typical of bit torrent
systems), the number of advertisements messages encountered by each client
are random. However, we were not able to measure the number of peers who
were downloading the same file due to unavailability of the required support
from the log file description. However it is purported that there should be
relation between the number of advertisement messages and number of peers
downloading/uploading the file. Also an inverse relation is seen between the
no of advertisement messages and the average downloading time of different
peers.
This can be put in mathematical terms as:

noOfAdvts ∝ NofPeers

avgDownloadT ime
(4)

where
noOfAdvts - Number of Advertisements of pieces per second
NofPeers - Number of peers downloading or uploading the file
avgDownloadTime - Average time each peers take to download a
piece.

It should be understood that the quantities NofPeers and
avgDownloadTime are dynamic and change with time, also causing the
noOfAdvts to change with time.

This quantity noOfAdvts is very important as it initiates the download
process of various pieces. However, when the advertisement message for an
already present piece is obtained, the message is discarded and the piece is
not downloaded again.

Through the measurements from the log file, we tried to find an upper
bound for the number of such advertisements for the files. The plot of
the number of advertisements is not shown here, as the behaviour is very
random. However we were able to find the bounds of the statistics using
MATLAB.
The results are shown below. The granularity of the measurement is one
second.

Min[noOfAdvts] = 0
Max[noOfAdvts] = 7
Avg[noOfAdvts] = 2.324

The measurements were done for an interval of one second.

15

- 304 -

On the basis of the aforementioned observations, we have tried to propose
a queuing model. The details are explained in the next section.

6 Proposed Queuing Model

Since BitTorrent is a very complex protocol and it would be very difficult to
model all the characteristics of the same, We have decided to model a very
basic model for BitTorrent. The properties of BitTorrent that we would
want to investigate are the download behavior and the incentive mechanism
of the protocol.

We have defined various parameters to model a simple BitTorrent client.
We are modelling the each BitTorrent client as a load dependent station.
The throughput of which depends upon the number of advertisements made.
Number of advertisements is modelled as the number of requests coming to
the station. The stationś service request time corresponds to the time taken
to download a particular piece. The service time is corresponds to the in-
verse of the downloading bandwidth, thus it is inverse of the bandwidth
factor.

Number of jobs in the queue represents the total number of pieces down-
loaded. The download of each piece represents the processing of a task.
However it should be seen that the download times of the pieces depends
upon the number of pieces already downloaded, since they are seeded simul-
taneously. Thus in our queuing model we have to keep the processing time
of a single job as a function of number of jobs executed. It can be shown
mathematically as:

serviceT ime = f(
1

nofJobsExecuted
) (5)

As discussed in the other section, we have calculated the minimum and
maximum bounds on the number of advertisement messages. These bounds
would correspond to the min-max bounds on the number of requests ar-
riving on the station. Since it was impossible to find the distribution of
the incoming advertisement messages. We were able to find out only the av-
erage. Thus we are keeping the incoming jobs distribution to be exponential.

The job classe type in our case is multiple class because it was observed
from the discussions in the previous section that for large files the size of
individual fragments to be downloaded are different. The size of pieces has
a huge impact on the download and the upload bandwidth.

16

- 305 -

However, we encountered few problems while using the JMT tool to
simulate our model. The problems are discussed in the next section. We
have not been able to solve them.

7 Analysis and Modelling using JMT

As we have proposed a queuing model in the section above, We have im-
plemented the model using the Java Modelling Toolkit(JMT07). We have
resolved the problems by the solutions aforementioned in the section above.

A simplistic model implemented in JMT is shown below.

Figure 5: Implemented model in JMT

We have considered a network where a single peer is downloading data
pieces from two different peers. The peers are identical, wrt to their configu-
rations. The peers are load dependent stations. The load dependent service
time distribution is taken to be exponential with the mean as:

mean = sizefactor × n (6)

The peers are designed as closed loop because of the incentive mecha-
nism of the protocol. The feedback ensures that the no of jobs inside the
station increases wrt. the number of jobs processed and coming out of the

17

- 306 -

station. We also have ensured that the service time is also dependent upon
the number of jobs in the station. This ensures that the incentive mecha-
nism is implemented well.

There are two producers, as represented by the peers 1 and peers 2. The
input to the peer3 which we are monitoring for the download behavior is the
combined output of peer1 and peer2. We run the whatif analysis simulation
for various values of sizefactor. We chose the values of 1, 1.4, 1.5, 1.8
which is the simple ratio of the various file sizes used in the actual experi-
ments. This has been done to correlate with the actual experimental results.

The graphs for the system response time obtained by various simulations
are shown below. They have been normalized on the same scale. This
has been done to see the similarities between the experimental and the
simulation results. The graphs are shown below. It is interesting to observe
how the response time changes wrt the various sizefactor values.

Figure 6: Simulation results for the sizefactor = 1.8

18

- 307 -

Figure 7: Simulation results for the sizefactor = 1.5

Figure 8: Simulation results for the sizefactor = 1.4

8 Conclusions

We have been able to perform effective experimentations and simulations
with the BitTorrent peer-to-peer file sharing protocol. We were able to un-
derstand the functioning of the protocol and various incentive mechanisms
imbibed in it.

We were able to find various performance bounds of the protocol and
were able to reason how various parameters affect the performance of Bit-
Torrent. Thus we have amassed enough knowledge to model certain char-

19

- 308 -

Figure 9: Simulation results for the sizefactor = 1.0

acteristics of the protocol. We have defined various parameters to define
a queuing model. The implementation was done on Java Modelling Tool
(JMT07), but was hampered by certain glitches . However we have been
able to implement a simplistic model and the simulation results concur well
with the experimental results.

This project has been a very good learning experience as it allowed us
to understand intricacies of the peer to peer file sharing.

We now know what all happens behind a click.

References

[SADS02] Stephanos Androutsellis-Theotokis and Diomidis Spinellis, “A
Survey of Peer-to-Peer File Sharing Technologies. White paper,” Elec-
tornic Trading Research Unit (ELTRUN), Athens University fo Eco-
nomics and BusinessDecember 2002.

[QUSRI04] Qiu D. and Srikant R., “Modeling and performance analysis
of BitTorrent-like peer-to-peer networks,” In Proceedings of ACM Sig-
comm August 2004.

[JMT07] M.Bertoli, G.Casale and G.Serazzi., “An Overview of the JMT
Queueing Network Simulator,” Technical Report, Politecnico di Milano
January 2007.

[AZR07] HTTP Online Document: Azureus - Java BitTorrent Client
“http://azureus.sourceforge.net/ ” as on Jan 2007

20

- 309 -

Performance Evaluation

of Tairona VoIP Server

Marco Paolieri Ivano Bonesana

February 6, 2007

ALaRI MSc 2005-2007

- 310 -

Contents

1 Introduction 2

1.1 Overview of Tairona . 2
1.2 MjSIP . 3
1.3 Goals . 4

2 SIP Protocol 4

3 Server Tra�c Analysis 6

3.1 SCI . 6
3.2 EMA . 7

3.2.1 Parser . 8
3.2.2 Java Analyzer . 8
3.2.3 Automatic Measurements Environment Scripts 8

4 Models 8

4.1 Performance Parameters . 9
4.2 Measurements . 9
4.3 Load Independent . 11
4.4 Load Dependent Model . 14

5 Measured Data 17

6 Conclusions 19

A Source Code 22

A.1 Call Scripts . 22
A.2 Parser Flex . 23
A.3 Java SIP Analyzer . 24
A.4 SIPServ Data Analyzer . 32

B JMT Screenshots 34

1

- 311 -

1 Introduction

This introduction aims to provide an overview of the system analyzed: Tairona.
Section 2 describes the SIP protocol in order to allow the reader to understand
how it works and which are the main information that allow us to model the
system.
Section 3 presents our methodology and the scripts we used to perform our
measurements. Data acquisition is fundamental because it allows us to develop
a procedure to collect automatically a signi�cant amount of data measured on
the real working system.
Section 4 shows the results of our measurements and the simulation of the system
we have built with JMT tool.
Section5 collects the measured data of our experiment on the SIP server.
Section 6, the last one, reports our observations and some �nal comments on
the results of this work.

1.1 Overview of Tairona

Figure 1: The Tairona system with client and server.

Tairona Communicator is a web-based platform for real time meeting and tu-
toring. It aims to provide a solution for face to face synchronous communication
between the tutor and the students in remote faculties and similar environments
where a live meeting is not possible. In particular the application is tailored
on needs of a scenario that is very unique: in the considered institution in fact,
teachers and students meet themselves only for the week necessary to complete
the course. [1]
Figure 1 shows the components of the system. The client side is a java applica-
tion launched on the user machine through webstart. It works as a completely
stand-alone application.
Tairona supports chat, graphics exchange and VoIP communication between
clients. As shown in the Figure 1, the server (but also the client) is based on

2

- 312 -

two projects:

• Babylon Java Chat [9] by Andy McLaughlin;

• MjSIP [8] by Luca Veltri, University of Parma.

The �rst one allows clients to be registered on the chat server, so that they
can select users and interact with them by sending text and graphics elements.
Chat in client side is located in the center of the window. The second one,
marked in red in the �gure, is the service that allows clients to use VoIP to talk.
During this work we will focus our modeling on this component of Tairona. The
Babylon Java Chat is part of another independent analysis.
Tairona uses the stack of MjSIP to support voice talks between users. Future
developments will exploit MjSIP to establish multimedia sessions supporting
chat (Babylon protocol will be removed), video-conferences and video-calls.

1.2 MjSIP

MjSIP [8] is an open source Java library developed by Luca Veltri at the de-
partment of Information Engineering of the University of Parma [11]. It has
been used also by the department of Electronic Engineering of the University
of Roma "Tor Vergata" [10] and is currently commercially exploited by Point-
erCom.
It implements a SIP1 stack protocol fully compliant with RFC 3261, well used
in VoIP and video communication through Internet.
The Java sources of MjSIP have been also ported successfully on cell phones
with J2ME.
Since we didn't develop MjSIP, this project gave us the possibility to investigate
the source code better understanding the way it works.
Starting from the small documentation available [7] and our source code analysis
we could describe generically the structure. MjSIP has two distinct software:
the client and the server. Both are based on the same SIP stack, but with
di�erent implementations. We will focus on the server side to evaluate its per-
formances under real stress conditions, and to do so we will use the command
line client provided with the framework. It has to be noticed that this command
line application is fully compatible with the Tairona web graphical application.
The server has a single thread architecture that processes requests and messages
compliant to SIP protocol. In according to the protocol users have to register
before they can call or talk, information about users are stored by the server in
a �le called �user.db�.
The implementation support both UDP and TCP protocols. In the Tairona
project we are always using the UDP datagrams, allowing the one-to-many
connection (broadcasting). The transport protocol does not a�ect the system
except for the network latency and packet loss. Since in this project we are
not considering the QoS but only the performance of the server2, we can safely
ignore this characteristic of the system.

1Session Initiation Protocol.
2Notice that when two clients are talking together using SIP, they are using a peer-to-peer

topology that does not involve the server.

3

- 313 -

1.3 Goals

We want to investigate the performances of the MjSIP server with an increas-
ing number of users. Our main goal is to describe the behavior of this system
in order to evaluate how performances decrease under stress conditions. The
method followed to achieve this target is the simulation of a queuing network
model with the Java Modelling Tool [13] based on real values measured on a
Tairona-test server under stress conditions.
Another important target is to develop a method to measure, acquire and ana-
lyze data of the server tra�c. The procedure should be autonomous and con-
�gurable as much as possible so that we can repeat it at any time and under
any condition.
It could be possible that the analysis will be adapted to the next version of the
Tairona server, and the measures repeated to create a new model. Thus, this
project should be reused in future works.

2 SIP Protocol

Nowadays Internet Telephony is gaining importance because it guarantees the
possibility of low-cost calls. From a technology point of view it requires the
establishment of a session between end-users; IETF exploited this by standard-
izing the Session Initiation Protocol (SIP) as RFC3261 [6]. The use of such
protocol is not limited to Internet Telephony but it can be used for other appli-
cations like: instant messaging, multimedia conferences, etc.
As already speci�ed in [7] the protocol can be transmitted over TCP as well as
UDP; obviously being more reliable and increasing the transmission-load in the
former case, unreliable but with a reduced transmission-load in the latter.
In order to understand how we measured the Tairona Server performance and
how we built up the model in JMT tool, it is necessary to analyze the messages
exchanged over SIP protocol in a classic VoIP call.

Figure 2: Example of a SIP scenario

Referring to the ISO/OSI protocol stack, SIP is an application-layer control pro-
tocol designed to establish multimedia sessions. In a typical scenario, as shown
in Figure 2, clients are connected to a SIP-Proxy that is in charge of routing
messages between clients. All standard SIP signaling messages are speci�ed in
RFC3261.
It has to be noticed that once the session has been established the communi-
cation between the caller (user A) and the callee (user B) does not involve SIP

4

- 314 -

signaling anymore, in fact VoIP phone calls or IM messages are not encapsulated
into SIP protocol but a direct peer-to-peer connection is set up between A and
B.

Figure 3: Messages exchanged establishing a SIP session

Sequential diagram of SIP signaling messages exchanged among the users in the
classical topology of Figure 2, is shown in Figure 3. In case the user A wants to
establish a session with the user B they exchange the following messages:

• The user A (caller) sends the INVITE packet containing the callee user-
name user B, and not specifying the destination IP address, to the Proxy-a
that looks for user B in the current registered users-database and then for-
wards the INVITE message to his IP address.

• The callee replies with a TRYING packet that is sent back to the proxy
and forwarded then to the caller. This message represents the receipt of
the invite call process.

• If the callee processing the INVITE considers it valid, it sends back to the
caller (through the proxy) the RINGING packet, then he waits for user
reply.

• When the user B answers the call sending an OK packet, the session is
established.

• When the communication has to be stopped a BYE packet is sent by the
user who wants to clear up the session.

• The receiver of BYE packet con�rms the reception of such SIP signaling
sending back an OK message.

A session can be established only when both users are registered on the server, so
before all these messages can be exchanged it is necessary for a client to register

5

- 315 -

himself on a proxy sending a REGISTER packet. Collecting all packets of this
type the server is able to build up a database to keep track of the usernames
and the corresponding IP addresses. The server doing so can easily forward
messages addressed to a certain username, not requiring that the user A knows
the IP address of user B. Other information kept in the database are the live-
time, after which an user is supposed to expire.
As already explained in the previous list a packet to go from the caller to the
callee is sent to the proxy and then it is in charge of forwarding it to the �nal
destination.

3 Server Tra�c Analysis

To evaluate the performances of the SIP server we need to analyze the total time
exploited by the server to process the packets used to establish a multimedia
session (messages that have been described in the previous section, in the Figure
3). In order to achieve this goal we proceeded in two orthogonal ways:

• SCI (Source Code Instrumentation): we analyzed the Java source code of
the server application and instrumented it, retrieving information about
functions execution time.

• EMA (External Monitor Application): we used an external application to
monitor the service time required by the server.

Both techniques have di�erent advantages and disadvantages which will be de-
scribed providing more technical details in the following subsections. All the
source code that has been written for this project is attached to this report as
Appendix A, obviously due to the big size the Java instrumented code of the
server has not been included.

3.1 SCI

Before being able to instrument the server application we proceeded analyzing
the source code to understand how it works. The application is composed of a
single-thread and all the connections are processed sequentially: when a message
reach the server it is dispatched by a method that calls the right function to
elaborate it. It can distinguish between di�erent messages, by recognizing them.
We modi�ed the source code in such a way that the time required for handling
each of the packets composing the SIP signaling was printed on the standard
output. Then, redirecting this output to a �le, it is simple with a small parser to
collect information about the service time of each message and, of course, of the
whole transaction. The time is shown in nanoseconds and the di�erence between
the time stamps taken at the entry point and at the end of the elaboration is
computed. The current time stamp is taken using the method

public static long java.System.nanoTime()

that returns the current value of the system timer in nanoseconds.
This kind of approach has the advantage that loss of time due to the execution
of other applications are less in�uencing the measurements as well as the time
required to pass a packet from the lower layers of the ISO/OSI protocol stack

6

- 316 -

to the application one is not taken into account. The disadvantage is that all
the time the software of the server is upgraded is necessary to patch the source
code again and analyzing another equivalent application means to go trough all
the source code again instrumenting it.

3.2 EMA

The orthogonal way we proceeded was to use an external application to monitor
the service time of the server. We used a TCP/UDP sni�er, directly interacting
with the OS, to be able of analyzing and processing the network tra�c without
the need of modifying internally the server application.
The open source tool tcpdump3 captures all the packets addressed to the net-
work interface. This tool has also the feature of �ltering packets that match
some �lter conditions.
In our case we �ltered the packets over UDP transport protocol and addressed
to the port 5060 saving them on an output �le. It contains a simply list of
packets specifying the following �elds: source and destination IP address, the
time stamp and the ASCII content. Di�erently from the previous kind of anal-
ysis (where the time is intrinsically computed instrumenting the code) we had
to develop a program able to process the �le, �ltering in subsequent steps the
di�erent types of SIP signaling and computing the time spent in processing a
particular message on the server side by using the information provided by the
time stamps of related packets.
Considering the advantages and disadvantages of such solution we can state that
in comparison to the previous one this is much better because being an external
program it works with upgraded version without the need of modifying the Java
source code. It has to be noticed that, as it has been designed it could be used
to monitor other SIP-compliant application. This is possible because it exploits
the tra�c �ltering at the network layer and not directly inside the application.
From this point of view it could be possible for instance to compare the perfor-
mances of two di�erent server application without even knowing how they are
programmed and how they works. This could be very useful considering the
case in which a server application has to be chosen rather than another one,
and there is no enough time to spend for comparing the programming style.
The disadvantages that are present in this kind of approach are: the concurrent
execution (with the Java server application)of the sni�er that is not computa-
tionally free for the PC, so this could lower the measured break down point of
the server.
Moreover the measured time is accounting also the time spent for a packet to
pass from lower layers (the measurements are exploited at network layer) to
higher one (the application layer).
We developed a complete automatic measurements environment composed of
several bash scripts that are in charge of executing di�erent tests increasing the
number of users who are concurrent making VoIP calls. Even if a bigger design
e�ort wasn't necessary we developed a system that is much more scalable and
let us test a lot of di�erent scenarios just changing few parameters.
The software we developed in Java, the parser and all the scripts designed to be
able to build a complete automatic measurements environment are described in

3http://www.tcpdump.org

7

- 317 -

the following subsection:

3.2.1 Parser

We built a parser realized in Flex in order to �lter [15] the output of the Tcp-
dump sni�er extracting only the information that are important for our analysis.
Once compiled the �ex (.lex) �le we got a C source code ready to be compiled.
The complete code of the Flex parser is shown in the appendix A.

3.2.2 Java Analyzer

One of the main tasks of the system analysis is exploited by the Java Analyzer.
The description of how it is working is the following: it loads in memory, read-
ing from a �le, the output of the parser and then it processes the data coupling
information about packets that are related to the same SIP signaling message.
Consider the simple scenario in which two di�erent clients that are trying to
make two simultaneously calls. The server receives the packets from the clients
in a wrong order because of the concurrency. It is then clear that to compute
the time needed by the server to process the packets we need to isolate the
information and look at the time stamps.
In a case in which the VoIP calls were managed in a sequential manner, then
the task of this tool would be just to compute di�erences among subsequent
entries. But considering that, di�erent SIP signaling messages are processed se-
quentially we designed an algorithm based on the following information: source
and destination IP, address and ASCII content of the packet. To know how to
�lter it we studied the standard looking at the reference RFC3261.

3.2.3 Automatic Measurements Environment Scripts

All the measurements are performed in a complete automatic way by several
di�erent bash scripts. All the source code is attached to this documents in
Appendix A.
There are two main scripts, one of those is running on the server while the
other on a client. On the client side the script is in charge of launching the
client applications that should wait for the incoming calls and after that these
have been setup, it executes the instances of clients that start to make VoIP
calls simultaneously. On the server the script is waiting for a synchronization
signal sent by the client-side and then it executes the server program in order
to handle the VoIP calls.
Since the program could not be ran without the console to automatize the test
and let several instances run concurrently we used a program called screen that
is able to create virtual consoles.

4 Models

In our simulations we model the system in two di�erent ways. The �rst one is a
load independent model based on an average response time of the server, com-
puted on the measurements of a single client request, the second one uses a load
dependent model designed on the measurements reported in next subsection.

8

- 318 -

4.1 Performance Parameters

This section describes the parameters used to create the model of the Tairona
SIP server. The system can be modeled as a single service center, characterized
upon the models of [2] and [3]. We measured the service time of the server with
an increasing number of concurrent SIP calls. It is possible to model this system
as a closed model in which the number N of customers is equal to the number
of concurrent calls for each measure.
In our measurements, we started from 10 clients connecting to the server, i.e. we
started with a base number of jobs in the system of N=10. Then we performed
a what-if analysis using JMT to evaluate the model.
We are interested in throughput (X), utilization (U) and response time (R)
of the server in order to �nd in which conditions the response time becomes
critical (e.g. server crashes). MjSIP server has a single thread architecture
and it doesn't implement any queue structure other than what is provided by
the Operating System and by the Java Virtual Machine. For these reasons we
assumed an in�nite queue size for the load independent model.
Throughput can be de�ned using the Little's law as

X =
N

R

The utilization law de�ne how to compute U

U = X · S

where S is the service time of the station and it has to be computed using
the measurements reported in next subsections. Details on the two models we
present (load dependent and load independent) are reported in the next subsec-
tions.

4.2 Measurements

Using the tools we developed, and that have been described in the previous sec-
tions we measured the performance of the server in an experimental way before
proceeding building the models and simulate them using JMT.
The measurements were structured in such a way we were automatically increas-
ing the number of concurrent calls, monitoring the network tra�c handled by
the server. Processing the data collected we were able to account the time spent
by Tairona server to manage the communication among di�erent clients. The
automatic measurements environment was built in such a way that a speci�ed
amount of clients were performing simultaneously calls and then, after a �xed
amount of time, they started again; increasing the number of calls by a factor
of 10.
The experimental results showed us that the crash-point of the server is iden-
ti�ed with 110 calls where a dramatically increase of service time is measured
and consequently the server is not able to accept any further incoming calls.
Even though a set of measures (i.e. from 10 to 110 concurrent calls), take almost
an hour, since we had a complete automatic tool, we were able to easily perform
several measurements in order to use more realistic values in the modeling phase
(using the average among all the measured series).

9

- 319 -

Figure 4: All data measured from the server.

Figure 5: Average of the measured service time.

10

- 320 -

We scheduled around 60 sets of measures, processing the results we noticed that
the measured values were congruous.
The overall pictures including the whole set of measurements series is shown in
Figure 4 while the average function is shown in Figure 5 and it is build using
the data listed in Table 1. As expected the trend of the total service time is
following an exponential -curve.
We were able to achieve a low level of granularity measuring the time spent by
the server processing each of the SIP signaling standard messages exchanged
during a VoIP call. We summed up all the di�erent values and collect the total
time required to handle a VoIP call. An example of data collected from a set
of measurements is shown in the Section 5. It is clear that di�erent kinds of
packets require di�erent amount of computation time to be processed but it
is important to conduct a quantitative analysis in order to determine where to
focus possible optimizations of the software code and eventually change protocol
policies. A result of this is shown in the Figure 6, where a pie-chart is used in
order to emphasize the percentage of time required by di�erent SIP messages.

Figure 6: Di�erent percentage of computation time required by di�erent packets of
SIP signaling.

4.3 Load Independent

Let us assume that server has a �xed mean service time for any arrival rate. We
can compute this value by taking the value measured for 10 client, i.e. when
the server is working well, and take the average (obviously over all the series,

11

- 321 -

i.e. 60 measurements). We assume a value of

S = 0.8863674s

to set-up a call between two users.
To simulate the system using JMT, we run a what-if analysis based on an
increasing number of customers. Starting from 10 job, arriving to 110 jobs by
100 sampling steps.

Figure 7: Network queue model for Load Independent model.

The independent model was the �rst model we created, starting from the as-
sumption that we wanted to study the behavior of the system considering a
single station with queue and a service time based on values computed from the
experiments.
The model as in the case of the load dependent one, was closed, because it is
then possible to model the concurrency of the incoming calls and perform a
what-if analysis to collect the trend of the chosen performance indexes.

Figure 8: Throughput of server plotted by JMT with Load Independent model.

The overall picture of the model is Figure 7, as we could expect, the response
time has a linear trend (please refer to in Figure 9). It is so because of not load
dependent characteristics of the service time, moreover the queue was consid-
ered to have an in�nite length. Even though this result was expected without
simulation, it is important to underline and notice how parallelism in the man-
agement of di�erent incoming calls helps reducing the user-perceived service

12

- 322 -

Figure 9: Response time of server plotted by JMT with Load Independent model.

time.
In a simple scenario where user A is calling user B, between processing two
subsequent messages (e.g. the INVITE and RINGING messages) the server can
start to handle other call messages. Our model does not take into account this
peculiarity of the server application but as if all the calls where treat in a pure
sequential way.
A more realistic model is proposed by [2] and represented in the network queu-
ing diagram of Figure 10: a call is described as a sequence of processes each
one representing a message (or a set of message) identi�ed in the image by their
standard [6] names4. Moreover this open model describes also the probability
for each message to produce a positive answer or an error. The service time
is parametrized on the invite message processing time, called µ. This model
allows some kind of parallelism: a message has to be processed by each queue to
establish a SIP call. Now, let us suppose that an invite message is processed by
the �rst station and so it produces a 200-OK message that enters in the second
queue. In the meantime an another invite message can enter in the �rst station.
It is clear that, in order to better describe the parallelism of the system we should
be able to measure some characteristics of the server such as disk accesses (used
in invite execution).

Figure 10: Model of a SIP server without network delay proposed in [2].

4ringing is �180-Ringing�, ok is �200-OK�, . . . please refer to [6] and [2].

13

- 323 -

Overall observations can be referred to Figure 15 where the comparison of the
two model is shown. At the crash-point in real experiments the server starts to
increase the latency of a session establishment respect to this model where the
calls are processed sequentially (avoiding parallelism). It is then clear that the
processor is not able to manage this workload.

Table 1: Average data computed on the whole sets of measurements)

clients avg avg/call
10 104.5433 10.44488
20 195.3769 9.848709
30 220.345 7.360848
40 311.5608 7.800255
50 613.1075 12.31878
60 959.3244 16.00799
70 983.01 14.1743
80 1401.079 17.49014
90 1632.022 18.12077
100 3307.473 33.07164
110 23054.87 211.226

4.4 Load Dependent Model

Figure 11: Network Queue model of server plotted by JMT using a load dependent
delay station.

In the case of load dependent we designed a model as the one of Figure 11 where
the server is represented as a Load Dependent Delay because the actual data
we have measured are representing not only the service time of the server - as
in the case of independent one - but the total response time R (i.e. queue time
summed with service time). In according to these observations it would not be
correct to model it as a queue station.
The typology of the model we chose was a closed one, because it is best to repre-
sent the concurrency of the incoming calls (i.e. since in the tool there is not the
possibility of specifying incoming burst calls, it was the consequent solution to
satisfy our requirements). Obviously using a closed-model it is not possible to
assume a certain distribution of incoming requests, so what we used to analyze
our server was a what-if analysis varying the number of incoming requests.
We loaded on the model the values corresponding to average time required to
process a call with di�erent numbers of customers from 10 to 110. This is shown

14

- 324 -

Figure 12: Throughput of the server in load dependent model

Figure 13: Response time in case of Load Dependent Model.

15

- 325 -

in the corresponding window of the tool, Figure 14.
Once we selected our performance indexes we were able to carry out the perfor-
mance analysis on the server. For our goals we chose the Throughput X, and
Response time R. What we got as the result is a response time that is closed to
the experimental measurements that have been carried out. This is described
by the Figure 15 where a complete comparison among the experimental, load
dependent and load independent data is shown.

Figure 14: Load Dependent Classes.

The throughput of the system is sketched in Figure 12 while for the response
time refer to the Figure 13. From the result of this analysis we can observe
that the throughput increases for the �rst measures (10, 20 clients) and then it
reaches some kind of stability around to 4 jobs/s. We notice also some variations
between 3 jobs/s and 5 jobs/s. The same happens with the response time with
a variation of 5 ms from measures at 40 clients and 60 clients.
A progressive degradation of the response time starts after 50 clients, although
the throughput does not seem to get extremely worse. The crash of the system
is visible at the end of the simulation with the collapse of the throughput, which
arrives to values under 1 job/s, and the explosion of the response time.
In terms of workload we can say that also the registrations of clients can a�ect
the measurements, although we have tried to limit as much as possible their
e�ect by using delays between the two kinds of requests. In fact, the di�erent
behavior of the server with a di�erent number of client registrations can suggest
a possible explanation for the variations of the throughput.

16

- 326 -

5 Measured Data

clients meas 1 meas 2 meas 3 meas 4 meas 5 meas 6 meas 7 meas 8
10 110.4 74.67218 113.0501 115.4991 116.3286 103.1635 106.1888 108.2843
20 96.34717 212.3843 200.8816 228.3345 224.1001 155.9871 177.4995 169.892
30 190.556 224.9111 218.8307 221.4251 217.726 230.6322 223.2188 221.486
40 283.698 316.9695 304.4281 308.6199 304.966 321.8973 318.58 323.5611
50 437.56 645.691 573.4215 545.0339 638.4256 670.1203 677.4926 672.3742
60 887.7038 972.8739 977.9167 934.0315 963.092 963.1704 949.9783 932.6076
70 413.1586 1122.361 955.3392 1149.033 795.7074 1037.211 837.1495 836.6302
80 1516.919 862.5897 1477.918 1589.158 1216.48 1420.24 1455.131 1265.801
90 1703.481 1313.178 1711.465 1726.616 1770.057 1733.911 1657.495 1588.444
100 3326.649 3197.926 3303.943 3340.425 3274.701 3320.67 3321.898 3270.889
110 11895.67 25253.32 24560.28 19566.28 22780.56 24081.35 19740.57 24901.54

clients meas 9 meas 10 meas 11 meas 12 meas 13 meas 14 meas 15 meas 16
10 98.50408 98.43562 108.2271 92.72369 96.04245 99.84576 112.8527 96.91904
20 205.0943 165.3653 219.253 223.5976 226.1161 180.9466 218.8782 235.2719
30 208.831 229.8707 226.3 212.6701 231.4384 221.8572 209.8604 208.7393
40 308.081 305.8792 303.5922 310.3795 317.8322 319.6501 317.0006 315.9967
50 589.9387 577.6773 544.1794 635.6895 583.519 666.722 563.2809 588.2278
60 950.7927 981.622 948.5217 960.9545 988.4754 984.4116 942.2538 952.6936
70 1253.319 965.2223 923.8401 1210.233 1068.693 1107.186 1029.001 944.4614
80 1375.485 1462.727 1375.689 1615.308 1248.61 1421.863 1199.93 1284.455
90 1531.525 1677.619 1617.961 1634.874 1589.307 1726.659 1637.724 1709.729
100 3295.316 3345.654 3291.782 3325.133 3281.812 3345.043 3305.577 3268.866
110 27441.41 26487.49 27774.42 19442.4 24608.42 20040.46 23248.29 27290.56

clients meas 17 meas 18 meas 19 meas 20 meas 21 meas 22 meas 23 meas 24
10 94.01212 92.75118 113.4297 104.7904 92.85312 104.0294 96.95444 113.2414
20 172.2593 234.0146 213.7327 162.5034 174.4294 212.9961 231.2259 231.2034
30 227.2957 225.9651 228.1 230.0167 227.5443 214.6129 216.6891 225.6698
40 314.4324 314.2599 314.0359 302.523 302.5109 301.7821 319.6866 322.2049
50 552.9955 682.0175 666.696 602.2102 563.6143 625.4555 594.0001 581.3167
60 980.7292 973.1266 985.2634 937.3938 980.882 967.4744 942.0529 967.091
70 1134.05 1085.93 890.2402 1201.206 1175.029 849.0668 1030.938 912.8275
80 1348.824 1496.998 1587.299 1473.842 1343.764 1306.84 1418.726 1386.409
90 1512.729 1718.515 1693.234 1519.021 1684.776 1530.68 1655.885 1782.344
100 3266.576 3352.346 3303.655 3331.579 3322.403 3321.09 3350.383 3315.096
110 27870.16 24610.18 27869.79 21018.24 20168.94 19342.38 24617.66 25774.9

clients meas 25 meas 26 meas 27 meas 28 meas 29 meas 30 meas 31 meas 32
10 99.84643 94.15967 101.8981 108.2311 106.2143 105.7981 110.9952 95.22515
20 174.6209 206.5023 208.9266 222.7963 233.5694 190.0874 227.4863 181.393
30 218.464 214.6953 224.7525 221.9124 217.6544 207.8638 228.5556 210.2403
40 304.6375 318.7971 315.1746 310.0965 314.4108 313.6212 323.5468 308.532
50 671.2202 589.1713 546.8795 662.5348 648.7509 674.0736 649.7374 649.4021
60 970.618 979.9816 977.6376 963.3296 947.6565 955.6882 941.3395 946.9926
70 874.6439 981.7546 807.5163 1169.493 1134.694 886.775 768.8217 771.9412
80 1396.677 1382.07 1350.325 1430.863 1209.772 1245.143 1610.723 1565.624
90 1518.7 1568.1 1546.529 1653.709 1663.134 1771.44 1518.618 1591.609
100 3284.256 3319.246 3347.139 3316.424 3308.931 3265.538 3352.237 3319.504
110 18935.25 21623.29 21288.76 22836.59 26558.49 26081.11 22607.02 19901.61

17

- 327 -

clients meas 33 meas 34 meas 35 meas 36 meas 37 meas 38 meas 39 meas 40
10 106.8761 113.2305 94.10254 96.59198 115.6225 115.9665 108.7624 95.44687
20 172.4206 176.875 190.1422 191.5284 184.4453 201.0867 190.4779 205.8144
30 223.5965 213.7234 227.0408 225.3842 231.5582 231.8185 213.6745 208.3148
40 312.7194 312.358 316.1034 303.7524 306.9604 311.0108 307.1733 308.028
50 594.3834 666.375 687.6807 654.1791 561.93 566.5811 622.5273 681.5601
60 939.7901 967.444 944.7784 934.5694 945.8009 979.0918 971.8096 939.5407
70 817.9467 802.7115 1120.818 1014.895 820.2447 804.7509 1090.451 1161.61
80 1433.092 1363.016 1611.344 1650.561 1385.186 1420.584 1588.538 1611.353
90 1704.652 1609.421 1661.688 1645.373 1761.06 1689.988 1654.126 1613.505
100 3337.408 3323.811 3310.48 3272.791 3314.115 3297.321 3294.658 3348.482
110 19683.31 19890.13 20331.65 21032.93 22783.32 22922.26 27340.52 27414.34

clients meas 41 meas 42 meas 43 meas 44 meas 45 meas 46 meas 47 meas 48
10 111.7435 117.4319 100.2985 112.9966 95.68382 114.5575 115.4025 102.9793
20 181.062 203.6658 166.2939 231.9972 175.4405 214.67 178.4876 192.2862
30 212.3924 224.5931 211.471 212.3851 225.1962 232.0039 211.9372 223.5222
40 303.4891 309.7392 311.0651 322.7267 300.6001 309.2541 322.8402 309.2264
50 589.3473 657.1184 582.5026 544.385 594.274 622.0844 599.5488 622.3902
60 987.3128 949.5479 981.9486 963.3478 945.6636 955.8904 939.2816 971.6484
70 951.3233 824.6087 1037.785 956.328 830.0525 843.0062 1186.062 883.9125
80 1279.961 1631.1 1348.571 1331.728 1547.274 1204.791 1366.686 1564.006
90 1752.839 1539.208 1513.233 1700.97 1601.319 1570.653 1509.645 1515.637
100 3309.139 3302.331 3341.188 3309.725 3321.48 3265.298 3271.067 3315.756
110 25105.93 22936.15 22068.04 25439.41 20435.07 26111.39 27150.49 21856.85

clients meas 49 meas 50 meas 51 meas 52 meas 53 meas 54 meas 55 meas 56
10 116.917 96.82751 104.5459 116.7071 106.3654 99.59541 104.7041 103.8946
20 160.7321 173.4994 187.1127 223.3145 235.6912 187.4098 187.1332 178.4718
30 212.8234 230.1731 208.9239 218.5594 229.0911 222.5469 230.5338 228.9231
40 309.603 314.399 315.713 305.0184 318.3366 309.0484 302.3562 311.0429
50 659.5508 630.0251 584.9477 569.6692 633.0445 656.571 652.233 581.3384
60 982.387 932.8207 935.7172 955.9883 937.0365 964.7517 941.6917 973.7311
70 1240.718 1073.684 979.588 1092.549 1204.104 1046.132 1194.461 1126.276
80 1273.513 1232.765 1261.898 1449.262 1465.653 1423.544 1515.939 1608.31
90 1573.295 1509.478 1528.913 1692.628 1639.819 1586.642 1769.628 1656.836
100 3303.922 3314.063 3330.185 3285.016 3316.284 3301.956 3298.249 3303.731
110 19850.17 24578.04 23899.54 19298.76 21348.38 22680.2 20848.72 27093.18

clients meas 57 meas 58 meas 59 meas 60 meas 61 meas 62 meas 63
10 112.0697 112.1207 107.7257 95.04184 100.3183 105.4215 100.7129
20 201.5546 191.4587 156.4083 211.1588 156.0383 187.5194 196.854
30 223.9015 221.37 210.6528 217.2714 211.6431 226.2292 222.0934
40 316.0355 319.7072 312.8856 321.826 300.6647 308.9131 314.3506
50 590.208 574.019 673.4379 588.0194 566.2029 587.6845 662.5265
60 960.5786 970.2932 982.0238 979.4993 938.4972 977.0445 979.555
70 961.1397 946.4893 990.8966 825.7377 1093.54 910.0089 774.3253
80 1467.377 1243.123 1198.804 1331.331 1358.932 1292.805 1464.751
90 1736.859 1635.29 1536.307 1723.064 1660.502 1588.515 1677.232
100 3344.136 3319.181 3263.133 3304.785 3320.155 3264.835 3273.432
110 25716.2 18640.62 27775.48 20445.88 18949.05 24861.73 23751.8

18

- 328 -

6 Conclusions

At the end of this work we can summarize our results. Basically we developed
a set of tools to analyze the Tairona SIP server under stress situations. These
are composed by scripts, Flex parsers and Java algorithms to analyze data, they
are listed in the Appendix A. This environment is highly automatized and can
be reused for others measures in other studies.
The results we get from the what-if analysis of our two models are reported in
the Figure 15. As described in Section 4 we followed two methods to create a
model that should represent our measurements: a load dependent model with a
delay station and a load independent model with a queuing station. The Figure
15 shows that the load dependent model (blue line) has a best �tting on the
measured data (red points). This is because a load dependent model changes its
service time (and in our case also the response time) in function of the number
of clients that are inside the system. On the other side, the load independent
model (purple line) does not seem to �t data over than 10-20 clients. We hy-
pothesize that this model is not able to describe the intrinsically parallelism (i.e.
the concurrency of messages) of this kind of network service.
Our goals were to improve the knowledge on the MjSIP framework and to

Figure 15: Overall picture of load dependent and load independent models,
experimental results

�nd a critical number of concurrent calls to avoid a crash of the server. We
determined that closing to 100 concurrent SIP calls the server collapses.
We focused our analysis only on the behavior of the server when processing SIP
call requests. We did not take care of the role of clients, the perception of users
and also any kind of Quality of Service because we measured essentially what
the MjSIP software does on server side. For these reasons a future development
of this study could be the model of the system including clients and network
description (i.e. network delay and human reaction time to answer to an incom-
ing call).

19

- 329 -

Anyway for this kind of server we don't consider the network delay to be a
primary parameter of the analysis because the number of the users necessary
to crash the system is so limited that with current state of the art network it
does not represent a problem. Moreover further details of the measures can be
applied. For example, to test how many time is required by the access to the
disk stored database it is necessary to �nd the methods of MjSIP that use it.
This means a more extended code analysis and instrumentation.

20

- 330 -

References

[1] Amanda Mattiuz, Maksim Djaekov, Ivano Bonesana, Francesco Regazzoni,
Tairona, an Open Source Platform for Worldwide Meeting and Tutoring,
ALaRI, University of Lugano, 2006

[2] Vijay K. Gurbani, Lalita J. Jagadeesan, and Veena B. Mendiratta, Charac-
terizing Session Initiation Protocol (SIP) Network Performance and Reliabil-
ity, Bell Laboratories, Lucent Technologies Naperville, Illinois, 2005

[3] Masataka Ohta, Overload Control in a SIP Signaling Network in Transaction
on Engeneering, Computing and Technology v12, march 2006, ISSN 1305-
5313

[4] Edward D. Lazowska, John Zahorjan, G. Scott Graham and Kenneth C.
Sevcik, Quantitative System Performance, Computer System Analysis Using
Queueing Network Models, Prentice-Hall, inc., 1984

[5] Giuseppe Serazzi, Performance Evaluation, lecture notes ALaRI, 2006

[6] RFC3261, www.ietf.org

[7] Luca Veltri, MkSip-Mini-Tutorial, v.1.5, Luca Veltri, april 24 2005

[8] http://www.mjsip.org

[9] http://www.visopsys.org/andy/babylon

[10] http://www.eln.uniroma2.it

[11] http://www.unipr.it

[12] http://www.pointercom.com

[13] http://jmt.sourceforge.net

[14] Java SDK API, http://java.sun.com

[15] http://www.gnu.org/software/�ex/manual/html_mono/�ex.html

[16] http://www.gnu.org/software/bison/manual/html_mono/bison.html

21

- 331 -

A Source Code

A.1 Call Scripts

1 #!/ bin/bash

2 # SIPcallBomb.sh script

3

4 echo "number of calls - time of registration

5 - time of auto response - duration of a call"

6

7 port =3000

8 limit=$((3000 + $1))

9

10 # listeners

11 while [$port -le $limit]

12 do

13 echo " screen -d -m ./uac.sh -p ${port}

14 --from -url sip:pippo${port}@192 .168.68.123 -g $2 -z

15 --via -addr 192.168.71.18 -y $3 -t $4 "

16 screen -d -m ./uac.sh "-p ${port}

17 --from -url sip:pippo${port}@192 .168.68.123 -g $2 -z

18 --via -addr 192.168.71.18 -y $3 -t $4"

19

20 port=$((port + 1))

21 done

22

23 sleep 10

24

25 port =4000

26 limit=$((4000 + $1))

27

28 # callers

29 while [$port -le $limit]

30 do

31 echo "screen -d -m ./uac.sh -p ${port}

32 --from -url sip:pippo${port}@192 .168.68.123 -g $2

33 --via -addr 192.168.71.18 -z

34 -c sip:pippo$ (($port - 1000)) @192 .168.68.123 "

35 screen -d -m ./uac.sh "-p ${port}

36 --from -url sip:pippo${port}@192 .168.68.123 -g $2

37 --via -addr 192.168.71.18

38 -c sip:pippo$ (($port - 1000)) @192 .168.68.123"

39 port=$((port + 1))

40 done

1 #!/ bin/bash

2 # launch calls script

3

4 counter =1

5

6 while [$counter -le 100]

7 do

8 echo "tentativo n. "$counter " chiamate " $(($counter * 10))

9 ./ SIPcallBomb.sh $(($counter * 10)) 1000 2 2

10 sleep 120

11 ssh ivano@192 .168.68.123 touch lock.txt < passwd.txt

12 killall screen

13 counter=$(($counter + 1))

14 sleep 1

15 done

22

- 332 -

A.2 Parser Flex

1 %x TIME

2 %x IP_SOURCE

3 %x IP_DEST

4 %x LENGTH_PKT

5 %x PKT

6

7 %option noyywrap

8

9 NUMBER [0-9]*

10 TIME_IP_SEPARATOR " IP "

11 IP_ADDRESS ("-"|[0 -9]|[a-z]|".")*

12 IP_SRC_DEST_SEPARATOR " > "

13 IP_LENGTH_SEPARATOR "length:"

14 NEW_LINE \n

15 CH_13 \r

16

17 %%

18

19 <INITIAL >{ NUMBER}":"{NUMBER}":"{NUMBER}"."{NUMBER} {

20 /* getting time */

21 printf ("%s \t", yytext);

22 BEGIN(TIME);

23 }

24 <TIME >{ TIME_IP_SEPARATOR} {BEGIN(IP_SOURCE);}

25

26 <IP_SOURCE >{ IP_ADDRESS} {

27 /* getting source ip address */

28 printf ("%s \t", yytext); /* src ip*/

29 }

30 <IP_SOURCE >{ IP_SRC_DEST_SEPARATOR} {

31 BEGIN(IP_DEST);

32 }

33

34 <IP_DEST >{ CH_13} {

35 }

36

37 <IP_DEST >{ IP_ADDRESS} {

38 /* getting source ip address */

39 printf ("%s \t", yytext); /* dest ip*/

40 BEGIN(LENGTH_PKT);

41 }

42

43 <LENGTH_PKT >{CH_13} {

44 }

45

46 <LENGTH_PKT >.*{ IP_LENGTH_SEPARATOR} {

47

48 }

49

50 <LENGTH_PKT >{ NUMBER} {

51 printf ("%s \t", yytext);

52 }

53

54 <LENGTH_PKT >{ NEW_LINE} {

55 BEGIN(PKT);

56 }

57

58 <PKT >{CH_13} {

59 }

60

23

- 333 -

61 <PKT >. {

62 printf("%s", yytext);

63 }

64

65 <PKT >{ NEW_LINE} {

66 printf("\n");

67 BEGIN(INITIAL);

68 }

69

70 <INITIAL >.|\n /* eat up any unmatched character */

71

72 %%

73

74 int main () {

75 yylex ();

76

77 }

A.3 Java SIP Analyzer

1 import java.util.StringTokenizer;

2

3 public class SIPRecord {

4

5 public static enum types {

6 REGISTER , INVITE , SIPOK , TRYING , RINGING , ACK , BYE , SIPNOTFOUND , UNKNOWN

7 };

8

9 private String time;

10 private long microsec;

11 private String srcIp;

12 private String destIp;

13 private String packetLen;

14 private String packetData;

15 private types packetType;

16

17 public SIPRecord(String line) {

18 StringTokenizer st = new StringTokenizer(line , "\t");

19 if (st.hasMoreTokens ())

20 setTime(st.nextToken ());

21 if (st.hasMoreTokens ())

22 setSrcIp(st.nextToken ());

23 if (st.hasMoreTokens ())

24 setDestIp(st.nextToken ());

25 if (st.hasMoreTokens ())

26 setPacketLen(st.nextToken ());

27 if (st.hasMoreTokens ())

28 setPacketData(st.nextToken ());

29 }

30

31 public String getDestIp () {

32 return destIp;

33 }

34

35 public void setDestIp(String destIp) {

36 this.destIp = destIp;

37 }

38

39 public String getPacketData () {

40 return packetData;

41 }

42

24

- 334 -

43 public void setPacketData(String packetData) {

44 this.packetData = packetData;

45

46 if (packetData.contains("REGISTER"))

47 packetType = types.REGISTER;

48 else if (packetData.contains("INVITE"))

49 packetType = types.INVITE;

50 else if (packetData.contains("Ringing"))

51 packetType = types.RINGING;

52 else if (packetData.contains("Trying"))

53 packetType = types.TRYING;

54 else if (packetData.contains("ACK"))

55 packetType = types.ACK;

56 else if (packetData.contains("BYE"))

57 packetType = types.BYE;

58 else if (packetData.contains("200 OK"))

59 packetType = types.SIPOK;

60 else if (packetData.contains("400 Not Found"))

61 packetType = types.SIPNOTFOUND;

62 else

63 packetType = types.UNKNOWN;

64 }

65

66 public String getPacketLen () {

67 return packetLen;

68 }

69

70 public void setPacketLen(String packetLen) {

71 this.packetLen = packetLen;

72 }

73

74 public String getSrcIp () {

75 return srcIp;

76 }

77

78 public void setSrcIp(String srcIp) {

79 this.srcIp = srcIp;

80 }

81

82 public String getTime () {

83 return time;

84 }

85

86 public void setTime(String time) {

87 this.time = time;

88 StringTokenizer st = new StringTokenizer(time , ":");

89 String token = st.nextToken ();

90 // System.out.println ("token: "+token);

91 microsec = (long) (Integer.parseInt(token)) * 3600 * 1000000;

92 token = st.nextToken ();

93 // System.out.println ("token: "+token);

94 microsec += (long) (Integer.parseInt(token)) * 60 * 1000000;

95 token = st.nextToken ();

96 // System.out.println ("token: "+token);

97 microsec += (long) (Double.parseDouble(token) * 1000000);

98 }

99

100 public long getMicrosec () {

101 return microsec;

102 }

103

104 public void setMicrosec(long time) {

25

- 335 -

105 this.microsec = time;

106 }

107

108 public types getPacketType () {

109 return packetType;

110 }

111

112 }

1 import java.util.Vector;

2

3 public class SIPList {

4

5 private Vector list;

6

7 public SIPList () {

8 list = new Vector ();

9 }

10

11 public void add(SIPRecord item) {

12 list.add(list.size(), item);

13 list.trimToSize ();

14 }

15

16 public SIPRecord get() {

17 SIPRecord temp = (SIPRecord) (list.elementAt (0));

18 list.removeElementAt (0);

19 return temp;

20 }

21

22 public SIPRecord get(String source , String dest) {

23 for (int i = 0; i < list.size (); i++) {

24 SIPRecord tmp = (SIPRecord) list.elementAt(i);

25 if (tmp.getSrcIp (). equals(source) && tmp.getDestIp (). equals(dest)) {

26 list.removeElementAt(i);

27 return tmp;

28 }

29 }

30 return null;

31 }

32

33 public SIPRecord get(String source , String dest , String regex) {

34 for (int i = 0; i < list.size (); i++) {

35 SIPRecord tmp = (SIPRecord) list.elementAt(i);

36 if ((tmp.getSrcIp (). equals(source) || source.equals("*"))

37 && (tmp.getDestIp (). equals(dest) || dest.equals("*"))

38 && tmp.getPacketData (). matches(regex)) {

39 list.removeElementAt(i);

40 return tmp;

41 }

42 }

43 return null;

44 }

45

46 public SIPRecord get(long microsec) {

47 for (int i = 0; i < list.size (); i++) {

48 SIPRecord tmp = (SIPRecord) list.elementAt(i);

49 if (tmp.getMicrosec () > microsec) {

50 list.removeElementAt(i);

51 return tmp;

52 }

53 }

54 return null;

26

- 336 -

55 }

56

57 public int getNumberOfElements () {

58 return list.size ();

59 }

60

61 }

1 import java.io.BufferedReader;

2 import java.io.FileNotFoundException;

3 import java.io.FileReader;

4 import java.io.IOException;

5 import java.util.Vector;

6

7 import org.w3c.dom.css.Counter;

8

9 public class SIPAnalyzer {

10

11 private SIPList Register;

12 private SIPList Ok;

13 private SIPList Invite;

14 private SIPList Trying;

15 private SIPList Ringing;

16 private SIPList Ack;

17 private SIPList Bye;

18 public static final int InviteTime = 0;

19 public static final int TryingTime = 1;

20 public static final int RingingTime = 2;

21 public static final int RegisterTime = 3;

22 public static final int AckTime = 4;

23 public static final int OkTime = 5;

24 public static final int ByeTime = 6;

25 private Vector [] totalTimes = new Vector [7];

26 private static long[] counters = new long [7];

27 public boolean verbose = false;

28 public SIPAnalyzer () {

29

30 Register = new SIPList ();

31 Ok = new SIPList ();

32 Invite = new SIPList ();

33 Trying = new SIPList ();

34 Ringing = new SIPList ();

35 Ack = new SIPList ();

36 Bye = new SIPList ();

37

38 for (int i = 0; i < 7; i++)

39 totalTimes[i] = new Vector ();

40 }

41

42 public void readLine(String line) {

43 // System.out.println(line);

44 SIPRecord s = new SIPRecord(line);

45 if (s != null && s.getPacketType () != null) {

46 switch (s.getPacketType ()) {

47 case REGISTER:

48 Register.add(s);

49 break;

50 case SIPOK:

51 Ok.add(s);

52 break;

53 case INVITE:

54 Invite.add(s);

55 break;

27

- 337 -

56 case TRYING:

57 Trying.add(s);

58 break;

59 case RINGING:

60 Ringing.add(s);

61 break;

62 case ACK:

63 Ack.add(s);

64 break;

65 case BYE:

66 Bye.add(s);

67 break;

68 default:

69 System.err.println("Packet unknown");

70 }

71 } else

72 System.err.println("Packet error");

73 }

74

75 public void sipClientProfiler () {

76

77 while (Register.getNumberOfElements () != 0) {

78 SIPRecord ask = Register.get ();

79 SIPRecord ok = Ok.get(ask.getDestIp(), ask.getSrcIp ());

80

81 if (ok != null) {

82 totalTimes[RegisterTime].add(new Long(ok.getMicrosec ()

83 - ask.getMicrosec ()));

84 counters[RegisterTime]++;

85 if (verbose)

86 System.out.println("REGISTER: ok: " + ok.getMicrosec ()

87 + " ask: " + ask.getMicrosec ()

88 + " totalRegisterTime = "

89 + totalTimes[RegisterTime] + " nRegisterTime = "

90 + counters[RegisterTime]);

91 }

92 }

93

94 while (Invite.getNumberOfElements () != 0) {

95

96 SIPRecord from = Invite.get("*", "*", ".*(?:(sip:user)).*:.*");

97

98 if (from == null)

99 break;

100

101 SIPRecord to = Ack.get(from.getSrcIp(), "*", ".*");

102

103 if (to != null) {

104 totalTimes[InviteTime].add(new Long(to.getMicrosec ()

105 - from.getMicrosec ()));

106 counters[InviteTime]++;

107 if (verbose)

108 System.out.println("INVITE : to: " + to.getMicrosec ()

109 + " from: " + from.getMicrosec ()

110 + " totalInviteTime = " + totalTimes[InviteTime]

111 + " nInviteTime = " + counters[InviteTime]);

112 }

113 }

114

115 while (Bye.getNumberOfElements () != 0) {

116 SIPRecord from = Bye.get();

117 SIPRecord to = Ok.get(from.getMicrosec ());

28

- 338 -

118

119 if (to != null) {

120 totalTimes[ByeTime].add(new Long(to.getMicrosec ()

121 - from.getMicrosec ()));

122 counters[ByeTime]++;

123

124 if (verbose)

125 System.out.println("BYE : to: " + to.getMicrosec ()

126 + " from: " + from.getMicrosec ()

127 + " totalByeTime = " + totalTimes[ByeTime]

128 + " nByeTime = " + counters[ByeTime]);

129 }

130 }

131

132 }

133

134 public void sipServerProfiler () {

135

136 // register invite ringing bye

137 while (Register.getNumberOfElements () != 0) {

138 SIPRecord ask = Register.get ();

139 SIPRecord ok = Ok.get(ask.getDestIp(), ask.getSrcIp ());

140 if (ok != null) {

141 totalTimes[RegisterTime].add(new Long(ok.getMicrosec ()

142 - ask.getMicrosec ()));

143 counters[RegisterTime]++;

144 if (verbose)

145 System.out.println("REGISTER: ok: " + ok.getMicrosec ()

146 + " ask: " + ask.getMicrosec ()

147 + " totalRegisterTime = "

148 + totalTimes[RegisterTime] + " nRegisterTime = "

149 + counters[RegisterTime]);

150 }

151 }

152

153 while (Invite.getNumberOfElements () != 0) {

154 SIPRecord from = Invite.get ();

155 SIPRecord to = Invite.get(from.getDestIp(), "*", ".*sip:user .*:.*");

156 if (to != null) {

157 totalTimes[InviteTime].add(new Long(to.getMicrosec ()

158 - from.getMicrosec ()));

159 counters[InviteTime]++;

160 if (verbose)

161 System.out.println("INVITE : to: " + to.getMicrosec ()

162 + " from: " + from.getMicrosec ()

163 + " totalInviteTime = " + totalTimes[InviteTime]

164 + " nInviteTime = " + counters[InviteTime]);

165 }

166 }

167

168 while (Trying.getNumberOfElements () != 0) {

169 SIPRecord from = Trying.get ();

170 SIPRecord to = Trying.get(from.getDestIp(), "*", ".*");

171 if (to != null) {

172 totalTimes[TryingTime].add(new Long(to.getMicrosec ()

173 - from.getMicrosec ()));

174 counters[TryingTime]++;

175 if (verbose)

176 System.out.println("TRYING : to: " + to.getMicrosec ()

177 + " from: " + from.getMicrosec ()

178 + " totalTryingTime = " + totalTimes[TryingTime]

179 + " nTryingTime = " + counters[TryingTime]);

29

- 339 -

180 }

181 }

182

183 while (Ringing.getNumberOfElements () != 0) {

184 SIPRecord from = Ringing.get ();

185 SIPRecord to = Ringing.get(from.getDestIp(), "*", ".*");

186 if (to != null) {

187 totalTimes[RingingTime].add(new Long(to.getMicrosec ()

188 - from.getMicrosec ()));

189 counters[RingingTime]++;

190 if (verbose)

191 System.out.println("RINGING : to: " + to.getMicrosec ()

192 + " from: " + from.getMicrosec ()

193 + " totalRingingTime = " + totalTimes[RingingTime]

194 + " nRingingTime = " + counters[RingingTime]);

195 }

196 }

197

198 while (Ack.getNumberOfElements () != 0) {

199 SIPRecord from = Ack.get();

200 SIPRecord to = Ack.get(from.getDestIp(), "*", ".*");

201 if (to != null) {

202 totalTimes[AckTime].add(new Long(to.getMicrosec ()

203 - from.getMicrosec ()));

204 counters[AckTime]++;

205 if (verbose)

206 System.out.println("ACK : to: " + to.getMicrosec ()

207 + " from: " + from.getMicrosec ()

208 + " totalAckTime = " + totalTimes[AckTime]

209 + " nAckTime = " + counters[AckTime]);

210 }

211 }

212

213 while (Bye.getNumberOfElements () != 0) {

214 SIPRecord from = Bye.get();

215 SIPRecord to = Bye.get(from.getDestIp(), "*", ".*");

216 if (to != null) {

217 totalTimes[ByeTime].add(new Long(to.getMicrosec ()

218 - from.getMicrosec ()));

219 counters[ByeTime]++;

220 if (verbose)

221 System.out.println("BYE : to: " + to.getMicrosec ()

222 + " from: " + from.getMicrosec ()

223 + " totalByeTime = " + totalTimes[ByeTime]

224 + " nByeTime = " + counters[ByeTime]);

225 }

226 }

227

228 while (Ok.getNumberOfElements () != 0) {

229 SIPRecord from = Ok.get ();

230 SIPRecord to = Ok.get(from.getDestIp(), "*", ".*");

231 if (to != null) {

232 totalTimes[OkTime].add(new Long(to.getMicrosec ()

233 - from.getMicrosec ()));

234 counters[OkTime]++;

235 if (verbose)

236 System.out.println("OK : to: " + to.getMicrosec ()

237 + " from: " + from.getMicrosec ()

238 + " totalOkTime = " + totalTimes[OkTime]

239 + " nOkTime = " + counters[OkTime]);

240 }

241 }

30

- 340 -

242

243 }

244

245 public double computeAverage(int what) {

246 long totTime = 0;

247

248 for (int i = 0; i < totalTimes[what].size (); i++)

249 totTime += ((Long) (totalTimes[what]. elementAt(i))). longValue ();

250

251 return (double) totTime / (double) counters[what];

252 }

253

254 public double computeVariance(int what) {

255 double mean = computeAverage(what);

256 double totTime = 0.0;

257

258 for (int i = 0; i < totalTimes[what].size (); i++)

259 totTime += Math.pow (((Long) (totalTimes[what]. elementAt(i)))

260 .longValue ()

261 - mean , 2);

262

263 return (double) totTime / (double) counters[what];

264 }

265

266 public static void main(String [] args) {

267

268 SIPAnalyzer sipa = new SIPAnalyzer ();

269

270 String filename = args [0];

271

272 String mode = null;

273 if (args.length > 1)

274 mode = args [1];

275

276 String verbose = null;

277 if (args.length > 2)

278 verbose = args [2];

279

280 try {

281 BufferedReader fileReader = new BufferedReader(new FileReader(

282 filename));

283

284 String line;

285 while ((line = fileReader.readLine ()) != null) {

286 sipa.readLine(line);

287 }

288

289 } catch (FileNotFoundException e) {

290 e.printStackTrace ();

291 } catch (IOException e) {

292 e.printStackTrace ();

293 }

294

295 if ((mode != null && mode.equals("-v"))

296 || (verbose != null && verbose.equals("-v")))

297 sipa.verbose = true;

298

299 if ((mode != null && mode.equals("-c"))

300 || (verbose != null && verbose.equals("-c"))) {

301 // CLIENT CODE

302 sipa.sipClientProfiler ();

303 } else {

31

- 341 -

304 // SERVER CODE

305 sipa.sipServerProfiler ();

306 }

307

308 System.out.println(counters[RegisterTime]

309 + " Register average time: "

310 + sipa.computeAverage(SIPAnalyzer.RegisterTime) + " variance "

311 + sipa.computeVariance(SIPAnalyzer.RegisterTime));

312 System.out.println(counters[InviteTime] + " Invite average time: "

313 + sipa.computeAverage(SIPAnalyzer.InviteTime) + " variance "

314 + sipa.computeVariance(SIPAnalyzer.InviteTime));

315 System.out.println(counters[ByeTime] + " Bye average time: "

316 + sipa.computeAverage(SIPAnalyzer.ByeTime) + " variance "

317 + sipa.computeVariance(SIPAnalyzer.ByeTime));

318 System.out.println(counters[TryingTime] + " TryingTime average time: "

319 + sipa.computeAverage(SIPAnalyzer.TryingTime) + " variance "

320 + sipa.computeVariance(SIPAnalyzer.TryingTime));

321 System.out.println(counters[RingingTime]

322 + " RingingTime average time: "

323 + sipa.computeAverage(SIPAnalyzer.RingingTime) + " variance "

324 + sipa.computeVariance(SIPAnalyzer.RingingTime));

325 System.out.println(counters[AckTime] + " AckTime average time: "

326 + sipa.computeAverage(SIPAnalyzer.AckTime) + " variance "

327 + sipa.computeVariance(SIPAnalyzer.AckTime));

328 System.out.println(counters[OkTime] + " OkTime average time: "

329 + sipa.computeAverage(SIPAnalyzer.OkTime) + " variance "

330 + sipa.computeVariance(SIPAnalyzer.OkTime));

331 }

332

333 }

A.4 SIPServ Data Analyzer

1 import java.io.BufferedReader;

2 import java.io.FileNotFoundException;

3 import java.io.FileReader;

4 import java.io.IOException;

5 import java.util.StringTokenizer;

6

7 public class SIPServ {

8

9 public static void main(String args []) {

10

11 double reg = 0.0;

12 double inv = 0.0;

13 double resp = 0.0;

14 double ack = 0.0;

15 double bye = 0.0;

16

17 int regCnt = 0;

18 int invCnt = 0;

19 int respCnt = 0;

20 int ackCnt = 0;

21 int byeCnt = 0;

22

23 String status = null;

24

25 try {

26 BufferedReader bir = new BufferedReader(new FileReader(args [0]));

27 String line = null;

28 while ((line = bir.readLine ()) != null) {

29 StringTokenizer st = new StringTokenizer(line , " ");

32

- 342 -

30 if (line.startsWith(":"))

31 continue;

32 while (st.hasMoreTokens ()) {

33 String tmp = st.nextToken ();

34 // System.out.println ("tmp: "+tmp);

35 if (!tmp.startsWith(" ")) {

36 if (tmp.equals("REGISTER")) {

37 regCnt ++;

38 status = tmp;

39 } else if (tmp.equals("INVITE")) {

40 invCnt ++;

41 status = tmp;

42 } else if (tmp.equals("RESPONSE")) {

43 respCnt ++;

44 status = tmp;

45 } else if (tmp.equals("BYE")) {

46 byeCnt ++;

47 status = tmp;

48 } else if (tmp.equals("ACK")) {

49 ackCnt ++;

50 status = tmp;

51 } else {

52 // A number !!!

53 if (status.equals("REGISTER")) {

54 reg += Long.parseLong(tmp);

55 } else if (status.equals("INVITE")) {

56 inv += Long.parseLong(tmp);

57 } else if (status.equals("RESPONSE")) {

58 resp += Long.parseLong(tmp);

59 } else if (status.equals("BYE")) {

60 bye += Long.parseLong(tmp);

61 } else if (status.equals("ACK")) {

62 ack += Long.parseLong(tmp);

63 }

64 status = null;

65 }

66 }

67 }

68 }

69 } catch (FileNotFoundException e) {

70 e.printStackTrace ();

71 } catch (IOException e) {

72 e.printStackTrace ();

73 }

74

75 if (args.length > 1)

76 System.out.println("REGISTER INVITE RESPONSE BYE ACK");

77 System.out.println(reg / regCnt + " " + inv / invCnt + " " + resp

78 / respCnt + " " + bye / byeCnt + " " + ack / ackCnt);

79

80 }

81 }

33

- 343 -

B JMT Screenshots

The screenshots of the JMT tool simulating the models as shown in the following
�gures:

Figure 16: The screenshot of the throughput for the load independent model.

34

- 344 -

Figure 17: The screenshot of the response time for the load independent model.

Figure 18: The screenshot of the throughput for the load dependent model

35

- 345 -

Figure 19: Utilization of server plotted by JMT.

36

- 346 -

8 – Various Topics

8.1 – Modeling a Road Junction for Vehicular Traffic Control 348

- 347 -

Modeling of a road junction using queuing theory, MATLAB
and JMT environments.

Francesco Zanini.

Project developed @ALaRI supervised by Prof. G.Serazzi.
Jan.18, 2007

1 Problem definition

Aim of this work is to describe road junction systems. This article is going to focus on the
performance of these kind of systems from a mathematical point of view using queuing theory. The
most popular types of road junctions are roundabouts and semaphores. Next section is going to
analyze the semaphore from both a purely mathematical and a simulation point of view. Section 3 is
going to focus on roundabouts. A comparison and a smart solution to improve traffic junctions is
given in section 4. A Graphical User Interface using MATLAB environment has also been
developed in order to show complex mathematical formulas in a more intuitive way. All
mathematical model have been developed assuming a number of input lanes equal to 4, 2 per
direction.

2 Semaphore

Fig.1: semaphore model.

- 348 -

Picture of fig.1 shows the diagram of a generic 3 lane semaphore (overall number of lanes for each
street equals 4) where λ is the input load for each street. In order to optimize the utilization of this
junction, the following ‘transmission protocol’ is presented in next picture.

Fig.2: semaphore protocol.

This road junction has been modelled with a system protocol similar to the one of Time Domain
Multiple Access. Each road is modelled by 3 network servers, one for each lane with different input
load, and different service time. Rf and T are free parameters that can be used to tailor this junction
basing on the input load. Subscript indexes st, s and lt refer respectively to the short-turn lane,
straight lane and long-turn lane. Every road has this structure. Poisson arrivals are assumed on
every input queue, with load intensity λ.
Average servers service time are constant and are calculated basing on the protocol and on
empirical data (cars speed parameters Rst, Rs, Rlt [cars/s]), average service times are:

RsRfTRfRs
TSs

⋅
=

⋅⋅
=

22

RstTRst
TSst 22

=
⋅

=

RltRfTRfRlt
TSlt

⋅−
=

⋅−⋅
=

)1(
2

)1(
2

The maximum input load on each queue is given by the fact that:

1≤⋅ Sλ

where λ is the input load and S the service time (S could be equal to Ss, Sst or Slt), so, the
maximum input load is given by

S
1

max =λ

While Sst is fixed, Ss and Slt can be proper set in order to maximize the maximum input allowable
load basing on Rs and Rlt parameters.

- 349 -

The average waiting time in queue W is given by:

NSRW +=

where N is the average queue length and R the average residual service time. From “Little law”,

WN λ=

substituting,

S
RW
λ−

=
1

at this point the average time D spent by each user in the system is given by

RsRltRsc
WD

,,
1

+=

To compute these values each queue must be considered separately.

Queue short-turn residual service time calculation:

The average value of the residual service time is calculated integrating the area of the following
picture of R(t).

Fig.3: R(t) for the short turn queue.

This picture shows that the server works only for T seconds and it is idle for T seconds. All
triangles in picture 3 are rectangle and isosceles.

⎟
⎠
⎞

⎜
⎝
⎛ +=

Rst
TR 1

4
1

- 350 -

Queue long-turn residual service time calculation:

The average value of the residual service time is calculated in the same way as did before but with
reference to the following picture.

Fig.4: R(t) for the short turn queue.

This picture shows that the server works only for T-RfT seconds and it is idle for T+RfT seconds.
All triangles in picture 4 are rectangle and isosceles.

⎟
⎠
⎞

⎜
⎝
⎛ −

++=)1)1(
4
1 2

Rsl
RfRfTR

Queue straight residual service time calculation:

The average value of the residual service time is calculated in the same way as did before but with
reference to the following picture.

Fig.5: R(t) for the straight queue.

- 351 -

This picture shows that the server works only for RfT seconds and it is idle for T+T(1-Rf) seconds.
All triangles in picture 4 are rectangle and isosceles.

⎟
⎠
⎞

⎜
⎝
⎛ +−=))2(

4
1 2

Rd
RfRfTR

Graphical results using both MATLAB and JMT are reported in section 4 and 5.

3 Roundabouts

Fig.6: roundabout model.

Picture of fig.6 shows the diagram of a generic 2 lane (p=2) roundabout (overall number of lanes
for each street equals 4) where λ is the overall roundabout input load. Poisson arrivals are assumed
on every input queue. This road junction has been modelled with a system protocol similar to the
one of a slotted ring. Each input road is modelled as 1 network server with service time depending
on the probability to inject a token into one of the two quarter of the roundabout. Each quarter of
each lane of each quarter of the roundabout is modelled as a server as well with fixed service time
that accepts only 1 jobs per time.
Average parameters are calculated basing on the protocol and on empirical data (cars speed to cross
one quarter of the roundabout Rr [cars/s]).

From ‘Little’s law’ applied to the overall red network (subscript index t),

ttt DN λ=

- 352 -

where tD is the average system queuing time, tN the number of cars and tλ the input load. Now
we have to find relations that relates general system’s parameters to single server’s one that can be
known.
The average number of cars in the overall system equals

npGNt ⋅⋅=

where pG ⋅ is the number of queues (red straight connecting servers) in the system and n is the
average number of cars into each server. Applying little to the single server,

Dn sλ=

where D is the average time spent queuing for each car into each server and sλ the input load of
each server. From network’s topology,

λλ Gt =

The average system service time tD is given by:

DHDt ⋅=

where H is the average number of hop (server crossing) between source and destination. This
depends on the network topology and on traffic spreading among the roundabout.
Unifying all previous consideration,

λλ ⋅⋅⋅=⋅⋅⋅ GDHDpG s

Solving for Ss ⋅= λρ , where S=1/Rr,

p
SH λρ ⋅⋅

=

The parameter ρ expresses the utilization time of each red server. This means also the probability
that a slot (1/4 of the roundabout) is full.
If the network is not congested, than the input flow at each street λ must be equal to the output flow
of it outλ . The last one is given by

S
pr

out
⋅⋅

=
ρλ

where r is the probability that a car is at its destination node. λ is given by expressing the just
derived ρ in function of it:

HS
p

⋅
⋅

=
ρλ

Comparing last 2 equations, it can be derived that

- 353 -

H
r 1
=

If we consider now the blue servers network, the service time bS of them depends on the probability
of injecting a car into the red one. The probability density function of bS is given by:

s
n

sb PPSnSSP 1)1()(−−==

where sP is the probability to inject a car in a time interval S. Mean value and Variance are given
by,

s
b P

SS =

2

2
2)2(

s

s
b P

PSS −
=

Substituting previous equation into P.K. formula to calculate the average waiting time inside the
queue of the blue system W, we obtain:

)(2
)2(

SPP
PSSW

ss

s

λ
λ

−
−⋅⋅⋅

=

sP is 1(always) except when all slots are busy and not arrived at destination, this equals to:

()
p

p
s H

rP ⎟
⎠
⎞

⎜
⎝
⎛ −−=−−=)11(1)1(1 ρρ

Merging all previous derivations, W can be expressed as:

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−−

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−

⋅⋅

=
p

p

p
xHx

p
xH

xS

W
)1(12

1
)1(1

2

where Sx ⋅= λ
The overall total delay inside the system D is given by:

SHWD ⋅+=

- 354 -

4 Comparison of both systems using MATLAB and proposed solution

In order to present previous equations in a more intuitive way, a graphical user interface has been
developed (see appendix A). Queue length and response time have been calculated for both systems
for different input load. Following picture shows an example of this software.

Fig.7: Junction analyzer.

Input variables are divided into 3 blocks: semaphore control variables, junction properties and input
load properties.
In the first group semaphore control variables as the semaphore period T and the protocol
parameters r (=Rf in formulas) can be properly set.
The second group sets cars speed properties while crossing these junctions.
The last group contains parameters expressing the traffic final destination.
In fig. 7 for parameters shown in the picture, with r and T sized in order to improve the performance
of both junctions, for input loads lower than 0.8 cars/s the roundabout shows the best performance.
For higher input loads the semaphore is better than the roundabout.
The proposed solution is to put traffic lights on the input of the roundabout than turns the
roundabout into a traffic lights when the network gets crowded. If the just derived equations are put
into the intelligent part of the semaphore, the semaphore just looking at the length of the queue is
able to understand the point at which turn the junction into a traffic light or into a roundabout. In
this example, the critical point is at 0.7 cars/s.

- 355 -

5 Checking simulation results using JMT

Fig.8: Matlab model of both Junctions.

Next pictures show the same system modelled using JMT.

Semaphore: model and obtained results

Fig.9: Semaphore JMT model of a road junction.

- 356 -

Fig.10: Semaphore queue length simulation results of server 1 & 2: (straight) & short turn. The input
load is 1/3 of the simulation made with Matlab.

Fig.11: Semaphore queue length simulation results of server 3: (long turn). The input load is 1/3 of the
simulation made with Matlab.

- 357 -

Roundabout: model and obtained results

Fig.12: Roundabout JMT model of a road junction.

Fig.13: Roundabout JMT model of a road junction the value corresponding to 230% equals to 0.83
cars/s as predicted by the derived Model.

It should be noted that in empirical simulations, analytical derived model and Matlab GUI model
perfectly match each others in both roundabout and crossroads.

- 358 -

6 Appendix

GUI object source code

% Performance evaluation of streets junctions.
%
% author: Francesco Zanini
% ALaRI 28/12/2006
%
function varargout = junction_analyzer(varargin)

gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @junction_analyzer_OpeningFcn, ...
 'gui_OutputFcn', @junction_analyzer_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end

function junction_analyzer_OpeningFcn(hObject, eventdata, handles, varargin)
handles.r=0.5;
handles.T=10; %s
handles.rd=2; %car/s
handles.rsc=1; %car/s
handles.rsl=1; %car/s
handles.rr=1; %car/s
handles.fsc=1/3;
handles.fd=1/3;
handles.fsl=1/3;

[l,Dd,Dsc,Dsl,Dr,Nd,Nsc,Nsl,Nr]=calc(handles.r,handles.T,handles.rd,handles.rsc,handles.rsl,handles.rr,handles.fsc,han
dles.fd,handles.fsl);
axes(handles.delay);
delay(l,Dd,Dsc,Dsl,Dr);
axes(handles.queue);
queue(l,Nd,Nsc,Nsl,Nr);

handles.output = hObject;

guidata(hObject, handles);

function varargout = junction_analyzer_OutputFcn(hObject, eventdata, handles)

varargout{1} = handles.output;

function sr_Callback(hObject, eventdata, handles)

handles.r=get(hObject,'Value');

[l,Dd,Dsc,Dsl,Dr,Nd,Nsc,Nsl,Nr]=calc(handles.r,handles.T,handles.rd,handles.rsc,handles.rsl,handles.rr,handles.fsc,han
dles.fd,handles.fsl);

- 359 -

axes(handles.delay);
delay(l,Dd,Dsc,Dsl,Dr);
axes(handles.queue);
queue(l,Nd,Nsc,Nsl,Nr);
guidata(hObject, handles);

 set(handles.vr,'String',get(hObject,'Value'))

function sr_CreateFcn(hObject, eventdata, handles)

if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function vr_CreateFcn(hObject, eventdata, handles)

function pT_Callback(hObject, eventdata, handles)

NewStrVal = get(hObject,'String');
NewVal = str2num(NewStrVal);

if isempty(NewVal) | (NewVal< 1) | (NewVal>100),

 OldVal = get(handles.sT,'Value');
 set(handles.sT,'String',OldVal)
else,

 set(handles.sT,'Value',NewVal)

 handles.T=NewVal;

[l,Dd,Dsc,Dsl,Dr,Nd,Nsc,Nsl,Nr]=calc(handles.r,handles.T,handles.rd,handles.rsc,handles.rsl,handles.rr,handles.fsc,han
dles.fd,handles.fsl);
 axes(handles.delay);
 delay(l,Dd,Dsc,Dsl,Dr);
 axes(handles.queue);
 queue(l,Nd,Nsc,Nsl,Nr);
 guidata(hObject, handles);
end;

function vr_Callback(hObject, eventdata, handles)

set(handles.sr,'String',get(hObject,'Value'))
NewStrVal = get(hObject,'String');
NewVal = str2num(NewStrVal);

if isempty(NewVal) | (NewVal< 0.15) | (NewVal>0.85),

 OldVal = get(handles.sr,'Value');
 set(handles.sr,'String',OldVal)
else,

 set(handles.sr,'Value',NewVal)

 handles.r=NewVal;

[l,Dd,Dsc,Dsl,Dr,Nd,Nsc,Nsl,Nr]=calc(handles.r,handles.T,handles.rd,handles.rsc,handles.rsl,handles.rr,handles.fsc,han
dles.fd,handles.fsl);
 axes(handles.delay);
 delay(l,Dd,Dsc,Dsl,Dr);
 axes(handles.queue);
 queue(l,Nd,Nsc,Nsl,Nr);

- 360 -

 guidata(hObject, handles);
end;

function prd_Callback(hObject, eventdata, handles)

NewStrVal = get(hObject,'String');
NewVal = str2num(NewStrVal);

if (NewVal>0),
 handles.rd=NewVal;

[l,Dd,Dsc,Dsl,Dr,Nd,Nsc,Nsl,Nr]=calc(handles.r,handles.T,handles.rd,handles.rsc,handles.rsl,handles.rr,handles.fsc,han
dles.fd,handles.fsl);
 axes(handles.delay);
 delay(l,Dd,Dsc,Dsl,Dr);
 axes(handles.queue);
 queue(l,Nd,Nsc,Nsl,Nr);
 guidata(hObject, handles);
end;

 function prd_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function prsc_Callback(hObject, eventdata, handles)

NewStrVal = get(hObject,'String');
NewVal = str2num(NewStrVal);

if (NewVal>0),
 handles.rsc=NewVal;

[l,Dd,Dsc,Dsl,Dr,Nd,Nsc,Nsl,Nr]=calc(handles.r,handles.T,handles.rd,handles.rsc,handles.rsl,handles.rr,handles.fsc,han
dles.fd,handles.fsl);
 axes(handles.delay);
 delay(l,Dd,Dsc,Dsl,Dr);
 axes(handles.queue);
 queue(l,Nd,Nsc,Nsl,Nr);
 guidata(hObject, handles);
end;

function prsc_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function prsl_Callback(hObject, eventdata, handles)

NewStrVal = get(hObject,'String');
NewVal = str2num(NewStrVal);

if (NewVal>0),
 handles.rsl=NewVal;

- 361 -

[l,Dd,Dsc,Dsl,Dr,Nd,Nsc,Nsl,Nr]=calc(handles.r,handles.T,handles.rd,handles.rsc,handles.rsl,handles.rr,handles.fsc,han
dles.fd,handles.fsl);
 axes(handles.delay);
 delay(l,Dd,Dsc,Dsl,Dr);

 axes(handles.queue);
 queue(l,Nd,Nsc,Nsl,Nr);
 guidata(hObject, handles);
end;

function prsl_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function prr_Callback(hObject, eventdata, handles)

NewStrVal = get(hObject,'String');
NewVal = str2num(NewStrVal);

if (NewVal>0),
 handles.rr=NewVal;

[l,Dd,Dsc,Dsl,Dr,Nd,Nsc,Nsl,Nr]=calc(handles.r,handles.T,handles.rd,handles.rsc,handles.rsl,handles.rr,handles.fsc,han
dles.fd,handles.fsl);
 axes(handles.delay);
 delay(l,Dd,Dsc,Dsl,Dr);
 axes(handles.queue);
 queue(l,Nd,Nsc,Nsl,Nr);
 guidata(hObject, handles);
end;

function prr_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function sT_Callback(hObject, eventdata, handles)

handles.T=get(hObject,'Value');

[l,Dd,Dsc,Dsl,Dr,Nd,Nsc,Nsl,Nr]=calc(handles.r,handles.T,handles.rd,handles.rsc,handles.rsl,handles.rr,handles.fsc,han
dles.fd,handles.fsl);
axes(handles.delay);
delay(l,Dd,Dsc,Dsl,Dr);
axes(handles.queue);
queue(l,Nd,Nsc,Nsl,Nr);
guidata(hObject, handles);

set(handles.pT,'String',get(hObject,'Value'))

function sT_CreateFcn(hObject, eventdata, handles)

if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

- 362 -

function pT_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function pshort_Callback(hObject, eventdata, handles)

NewStrVal = get(hObject,'String');
NewVal = str2num(NewStrVal);

if (NewVal>=0 && NewVal<=1),
 handles.fsc=NewVal;

[l,Dd,Dsc,Dsl,Dr,Nd,Nsc,Nsl,Nr]=calc(handles.r,handles.T,handles.rd,handles.rsc,handles.rsl,handles.rr,handles.fsc,han
dles.fd,handles.fsl);
 axes(handles.delay);
 delay(l,Dd,Dsc,Dsl,Dr);
 axes(handles.queue);
 queue(l,Nd,Nsc,Nsl,Nr);
 guidata(hObject, handles);
end;

function pshort_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function pstraight_Callback(hObject, eventdata, handles)

function pstraight_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function plong_Callback(hObject, eventdata, handles)

NewStrVal = get(hObject,'String');
NewVal = str2num(NewStrVal);

if (NewVal>=0 && NewVal<=1),
 handles.fsl=NewVal;

[l,Dd,Dsc,Dsl,Dr,Nd,Nsc,Nsl,Nr]=calc(handles.r,handles.T,handles.rd,handles.rsc,handles.rsl,handles.rr,handles.fsc,han
dles.fd,handles.fsl);
 axes(handles.delay);
 delay(l,Dd,Dsc,Dsl,Dr);
 axes(handles.queue);
 queue(l,Nd,Nsc,Nsl,Nr);
 guidata(hObject, handles);
end;

function plong_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function pstra_Callback(hObject, eventdata, handles)

- 363 -

NewStrVal = get(hObject,'String');
NewVal = str2num(NewStrVal);

if (NewVal>=0 && NewVal<=1),
 handles.fd=NewVal;

[l,Dd,Dsc,Dsl,Dr,Nd,Nsc,Nsl,Nr]=calc(handles.r,handles.T,handles.rd,handles.rsc,handles.rsl,handles.rr,handles.fsc,han
dles.fd,handles.fsl);
 axes(handles.delay);
 delay(l,Dd,Dsc,Dsl,Dr);
 axes(handles.queue);
 queue(l,Nd,Nsc,Nsl,Nr);
 guidata(hObject, handles);
end;

function pstra_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

Functions source code

% Performance evaluation of streets junctions.
%
% author: Francesco Zanini
% ALaRI 28/12/2006
%
function [l,Dd,Dsc,Dsl,Dr,Nd,Nsc,Nsl,Nr]=calc(r,T,rd,rsc,rsl,rr,fsc,fd,fsl);

H=(1*fsc)+(2*fd)+(3*fsl);
Sd=(2*fd)/(r*rd);
Ssc=(2*fsc)/(rsc);
Ssl=(2*fsl)/((1-r)*rsl);
Sr=1/(0.83*rr);
a=[Sd Ssc Ssl Sr];
b=(1/min(a))+0.1;
l=0:1/1000:b;
Dsc=[];
Dd=[];
Dsl=[];
Nsc=[];
Nd=[];
Nsl=[];
Dr=[];
Nr=[];

% semaphore
for i=1:length(l) %sc
 R=0.25*(T+(1/rsc));
 W=R/(1-(l(i)*Ssc));
 D=W+(1/rsc);
 N=l(i)*fsc*W;
 if (D<100) Dsc=[Dsc D];end;
 if (N<50) Nsc=[Nsc N];end;
 if (D>100 && N>50) break;end;
end;
for i=1:length(l) %d
 R=0.25*(T*(2-r)*(2-r)+(r/rd));

- 364 -

 W=R/(1-(l(i)*Sd));
 D=W+(1/rd);
 N=l(i)*fd*W;
 if (D<100) Dd=[Dd D];end;
 if (N<50) Nd=[Nd N];end;
 if (D>100 && N>50) break;end;
end;
for i=1:length(l) %sl
 R=0.25*(T*(1+r)*(1+r)+((1-r)/rsl));
 W=R/(1-(l(i)*Ssl));
 D=W+(1/rsl);
 N=l(i)*W*fsl;
 if (D<100) Dsl=[Dsl D];end;
 if (N<50) Nsl=[Nsl N];end;
 if (D>100 && N>50) break;end;
end;

%roundabout
for i=1:length(l) %sc
 x=l(i)/rr;
 v=((H-1)*x/2)^2;
 num=x*((2/(1-v))-1);
 den=2*(1-x-v);
 W=num/(rr*den);
 D=W+(2/rr);
 N=l(i)*W;
 if (D<100) Dr=[Dr D];end;
 if (N<50) Nr=[Nr N];end;
 if (D>100 && N>50) break;end;
end;
end

% Performance evaluation of streets junctions.
%
% author: Francesco Zanini
% ALaRI 28/12/2006
%
function delay(l,Dd,Dsc,Dsl,Dr);

plot(l(1:length(Dsc)),Dsc,'LineWidth',1.5);
hold on;
plot(l(1:length(Dd)),Dd,'r','LineWidth',1.5);
plot(l(1:length(Dsl)),Dsl,'m','LineWidth',1.5);
plot(l(1:length(Dr)),Dr,'g','LineWidth',1.5);
grid minor;
v=AXIS;
set(gca,'XTick',v(1):0.2:v(2));
set(gca,'XTickLabel',v(1):0.2:v(2));
xlabel('input load [car/s]');ylabel('delay [s]')
legend('short turn','straight','long turn','roundabout');
hold off;
end

% Performance evaluation of streets junctions.
%
% author: Francesco Zanini
% ALaRI 28/12/2006
%
function queue(l,Nd,Nsc,Nsl,Nr);

- 365 -

plot(l(1:length(Nsc)),Nsc,'LineWidth',1.5);
hold on;
plot(l(1:length(Nd)),Nd,'r','LineWidth',1.5);
plot(l(1:length(Nsl)),Nsl,'m','LineWidth',1.5);
plot(l(1:length(Nr)),Nr,'g','LineWidth',1.5);
grid minor;
v=AXIS;
set(gca,'XTick',v(1):0.2:v(2));
set(gca,'XTickLabel',v(1):0.2:v(2));
xlabel('input load [car/s]');ylabel('cars in queue [s]')
legend('short turn','straight','long turn','roundabout');
hold off;
end

1 Bibliography

[1] Material of the course “Performance Evaluation” by G. Serazzi

[2] Material of the course “Data Networks B” by A. Bononi

[3] Data Networks, D. P. Bertsekas, R. G. Gallagher

[4] assignments of the course @ MIT by D. P. Bertsekas.

[5] MATLAB, user guide

[6] JMT, user guide

- 366 -

	Preface
	1.Software Applications
	Dynamic Web Service Selection
	Web Services: bottlenecks identification
	QNet of a Parallel Application

	2.Capacity Planning of Enterprise Systems
	Cap.Plan. of an Hospital Intranet
	Intranet with Web Servers and RAID-0 storage
	Finite Capacity Region and Drop Rule

	3.Comp.Systems Architectures
	Memory Hierarchy
	Shared-memory Multiprocessor

	4. Multimedia
	Modelling a surveillance System
	VoIP Gateway

	5.Security
	Encryption in WirelessPAN
	Security for SCADA field devices

	6.Networks
	Cap.Planning of a Wireless Lan
	Ad-Hoc Wireless Networks
	Peer to Peer file sharing

	7.Protocols
	Bit-Torrent P2P system
	Tairona VoIP Server

	8.Various topics
	Vehicular Traffic Control

