

Performance Evaluation with Java Modelling Tools

Giuliano Casale Department of Computing Imperial College London, UK

Joint work with: Giuseppe Serazzi (Politecnico di Milano, Italy) Lulai Zhu (Imperial College London, UK)

Outline

- Introduction
- Activity 1: getting started
- Activity 2: load balancing
- Activity 3: parameter sweeping
- Activity 4: capacity constraints
- Activity 5: workflows & fork-join

- Please download the latest JMT (v1.0.2) here:
 - http://jmt.sf.net/Download.html

Introduction

Java Modelling Tools

- Simulation and analysis of queueing networks.
- Project started in 2002 at Politecnico di Milano, since 2010 co-developed at Imperial.
- JMT is open source: GPL v2,
 - Medium-size project: ~1,000 classes
 - JAR, source code and maven build files (pom.xml) <u>http://jmt.sourceforge.net/Download.html</u>
- Good diffusion (59k downloads, mostly from the US)
- Community interaction mainly through
 - Bug reports
 - Feature requests
 - Templates

Supported models

- Queueing Systems
- Queueing Networks (QN)
 - Product-form
 - Extended (fork/join, blocking, priorities, ...)
- Petri Nets (PN)
 - Stochastic Petri Nets (SPN)
 - Generalized Stochastic Petri Nets (GSPN)
 - Coloured Petri Nets (CPN)
- Queueing Petri Nets (QPNs)

Who uses JMT?

- JMT is for PE practice, teaching, and research
- Several university courses worldwide (tell us!)
- Supporting materials available on website

JMT Start Screen

JSIMgraph: QN & PN simulation

Templates

JSIMwiz: wizard-based user interface

File Action Simulat	tion Define Help					
Classes Stations C Station Parameter	connections Station Parameters Perf	ormance Indices $igly $ Reference Station:	\ Finite Capacity Regions \ Si	mulation $ig angle$ What-if analysis $ig angle$		
For each station in th	e list, define the requested parameters					
Sink	Oueue Section Service Section	Routing Section				
Station1	Capacity	Queue Policy Station queue policy: Non-pree	mptive Scheduling			•
	• infinite	Clas	s	Queue Policy	-	Drop Rule
			Number of Customers Number of Customers Average number of customers	for each chosen class at each chosen st	ation.	
	⊖ finite		Station Name: Conf.Int/Max Rel.Err: Min:	Station1 Class Name: 0.99 / 0.03 Analyzed samp 8.573 Max:	Class1 12.56 5898240 9.090 7.425	
	max no. customers (queue+service)		Click on green bars to sample values (green	31 H b see the simulation time, the sample an).	Abort Measure 7.176 5.381 ide instantaneous values 1.794 verage (blue), and the 0.000	0 0.9 1.8 2.7 3.6 10^6
			► 11 III	Simulation Comp	olete (Time Elapsed: 9.0s)	×

JSIMengine: discrete-event simulator

Simulation components defined by 3 sections

Discrete-event simulation of section messaging

JSIMengine: JMT architecture

JMVA: analytical solver

- Analysis of product-form queueing networks
- Several exact and approximate algorithms
 - Exact MVA
 - Reiser & Lavenberg O(N^R)
 - Load-dependent O(N^{2R})
- Normalizing constant
 - RECAL O(N^M)
 - CoMoM O(NlogN)
 - Approximate MVA O(1)
 - Chow
 - Bard-Schweitzer
 - AQL
 - Linearizer
 - De Souza-Muntz

N: jobs M: stations R: classes

JMVA: model parameterization

MVA - Product form queueing network solver							
<u>File</u> <u>A</u> ction <u>H</u> elp							
🗅 📂 🔟 🕨 🐼 🕢 Algorithm: MVA 🕶							
Classes Stations Service D	Classes Stations Service Demands Reference Station What-if Comment						
Service Demands Input service demands of each station and class. If the station is "Load Dependent" you can set the service demands for each number of customers by double-click on "LD Settings" button. Press "Service Times and Visits" button to enter service times and visits instead of service demands.	* Storage1 Storage2 Storage3 ApplServer1 ApplServer2 WebServer	Class1 20.000000 80.000000 31.000000 14.000000 23.000000 12.000000	Class2 90.000000 30.000000 33.000000 20.000000 14.000000 7.000000				

JMVA: solutions

NVA

S TI

Number of C omer class at the select Aggregate 0.9999999 1.000000 0.581818 0.309091	ation tion of a customer class at * Aggrego Drage1 0.999 Drage2 1.000	umber of Customers	Residence Times utilization of a delay station i Class2	System Response Time	Utilization	e greater than 1)	
omer class at the select Aggregate 0.9999999 1.000000 0.581818 0.309091	ation tion of a customer class at * Aggrego 	class at the selected station. The upper class 1	utilization of a delay station i Class2	s the average number of customers in t	he station (it may b	e greater than 1)	
Aggregate 0.9999999 1.000000 0.581818 0.309091	* Aggrego prage1 0.999 prage2 1.000	0.9999999 0.181818	Class2				
0.9999999 1.000000 0.581818 0.309091		0.999999 0.181818	-				
0.336364 0.172727	Diserve	1.000000 0.727273 0.581818 0.281818 0.309091 0.127273 0.336364 0.209091 0.172727 0.109091	8 0.818181 9 0.272727 8 0.300000 9 0.181818 0.127273 0.063636	<u>ج</u>			
				<u>File Action H</u> elp	Ch	oice of solution algo	orithm
				D 🔁 🗊 🕨 🐼 🥥 /	Algorithm:	MVA	-
				Classes Stations Se	rvice Times	KECAL MoM	Î
				What-if analysis Select a control parameter if yo models with its values changing The performance indices will be	uv gir esl	CoMoM Approximate Chow Bard-Schweitzer AQL	
					The performance indices will be	models with its values changing in The performance indices will be sl	models with its values changing ir The performance indices will be sl Bard-Schweitzer AQL Linearizer

JABA: bottleneck identification

JABA: bottleneck identification

Service demands of class 1

JMCH: Markov chain animation

JWAT: workload characterization

jwat	- Workload An	alysis			
	ction H <u>e</u> lp	(2)			Column-Oriented Log File
Main pa Inputs Define a	new input form	tatistics \ Clus	tering \Clustering Informat	ion \ Numbe	er: 3 Input file Load file D:\ws-measurem tyt
Select VV V	Name 'ariable 0 'ariable 1 'ariable 2	Type Num… ▼ Num… ▼ Num… ▼	Comment Response Flight Reserv. Response Travel Agency 1 Response Travel Agency 2	Sep. PerI5 Reg. Exp. Bef. ([+-])?\d+([.]\d ([+-])?\d+([.]\d ([+-])?\d+([.]\d	Rep. File information Number of observations: 15240 File name: ws-measurem.txt File format Load saved format Save form D:\ws-measurem.jwatformat
			Loading Comple # ob # co To s Continu	ete 🛛 🕹 🗙	Workload sampling method Choose campling method Complete file Loading size options Data Format Templates
			< Back	Next > Solve Exit Help	For filtering on variable see next st

JWAT: workload characterization

Imperial College London

Activity 1: getting started

Hands-on activity: M/M/1

- Arrival rate: λ=0.5 job/s (Exponential)
- Service rate: μ=1.00 job/s (Exponential)
- Goal: verify M=>M property

💯 JSIMgraph - Graphical Queueing Network and Petri Net Simulator

Class definition

- Open, closed, and mixed workloads
- Priorities and reference stations

Define cu	istomer classes		· · ·			· · ·		×
Classes Define typ Closed Cla Open Clas Priorities	Characteristics pe (Open or Closed), name asses: If a ClassSwitch is ir sses: An open class that ha : A larger value implies a h	e and parameters for each n the model, then all the cl as Fork, ClassSwitch, Scal e nigher priority.	customer cla losed classes er or Transit	ass. must have the ion as the refe	e same reference station. rence station is not generated by a	any Source.		Add Class Classes: 2 🔹
Color	Name	Туре	Priority	Population	Interarrival Time Distribution		Reference St	ation
	Class0	🥥 Open 👻	0		exp(5)	Edit	Source 0	- ×
	Class2	C Closed 👻	0	10			🗄 Delay 1	- ×

Arrival distribution

Queue section

- Non-preemptive scheduling: FCFS, LCFS, RAND, SJF, LJF, SEPT, LEPT, HOL (FCFS priority)
- Preemptive scheduling: PS, GPS, DPS

Editing Queue 1 Properties.				×
Station Name				
Station Name: Queue 1				
Oueue 1 Parameters Definito	n			
Queue Section Service Sectio	n Routing Section			
Capacity	Queue Policy	1		
• Infinite	Station queue pol	icy: Preemptive Schedu	uling	
	Class	Queue Policy	Drop Rule	Service Weight
Buffer size	Class1	PS •	Infinite Capacity	
O Finite	Class2	PS •	Infinite Capacity	
Max no. customers (queue+service)				

Service section

Service time distribution

Perf. Indices

- 19 types of performance indices
 - Utilization, residence time, response time
 - Throughput, firing rates, drop rates, ...
- Granularity: system, station, class, mode, sink

💯 Define performance indices

Performance Indices Define performance indices to be co	pllected and plotted by the si	mulation engine.		Select an inde	ex •
Performance Index	Class/Mode	Station/Region	Stat.Res.	Conf.Int.	Max Rel.Err.
Utilization	All Classes 🔻	■ Queue 1 🔹 🔹		0.99	0.03 🗙
	All Classes				
	Class1				
	Class2				

 \times

Sim. Results

Statistical analysis

Automated (overridable) simulation stop

Transient filtering

- Intelligent filtering of simulation data
 - R5 heuristics, spectral analysis, MSER-5 rule, ...

Detailed statistical results

• Response time percentiles, buffer overflow probability, departure process moments, ...

erformance Indices efine performance indices to be co	ellected and plotted by the s	imulation engine.				Selec	t an i	index	{	
Performance Index	Class/Mode	Station/	/Region	Stat.F	Res.	Con	f.Int.		Max	Rel.Err.
Response Time	All Classes 🔻	· Paueue 1	•		\mathcal{I}		0.	.99		0.03
MM1_Number Measures Mean: Standard Deviation Skewness: Moments First Moment: 4 Third Moment: 2 Bounds Min Value: Min Simulation Ti No. of Discarded Filter analyzed s Based on number	of Customers 4.2661 Variance: 3.3185 Coefficient of Va 0.4442 Kurtosis: 2661 Second Momer 3.4.8163 Fourth Momen 0.0000 Max Value: 0.0670 Max Simulation Samples: 5 camples Based on simulation	11.0125 0.7779 -0.9469 ant: 29.2121 t: 2059.7804 9.7153 9.7153 227165.4694 tion time	0.15 0.15 0.14 0.14 0.13 0.13 0.13 0.12 0.11 0.11 0.10 0.10 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.02							
Initial simulation Final simulation t	time: 0.0000 ime: 227165.4694		0.00 0.65 1.30 1	94 2.59 3.24	3.89 4.53	5.18 5.83 6.48	7.12 7.7	7 8.42	9.07 9.72	

Loggers

• Simulation events can be traced in CSV files

global.csv

job id (same throughout / simulation)

LOGGERNAME;TIMESTAMP;JOB_ID;CLASS_ID,INTERARRIVAL_SAMECLASS;INTERARRIVAL_ANYCLASS;SIMUL_START_TIME req arrive;0.009420010041266342;253625;Transactional workload;;; req leave;0.0217557654334812;253625;Transactional workload;;; req arrive;0.031032734664243056;253498;Transactional workload;;; req leave;0.04915995332909814;253498;Transactional workload;;; req arrive;0.07727161520772474;253542;Transactional workload;;;

job class

Activity 2: Load balancing

Routing section or

- Probabilistic routing
- State-dependent routing: JSQ, SRT, LU, FS
- Load-dependent probabilistic routing

Queue Section Service Section	on Routing Section	
Routing Strategies		Description
Class	Routing Strategy	Jobs are routed randomly
Class1	Random 👻	to stations connected to
Class2	Random 🔫	the current one. All routes
	Random	to be selected
	Round Robin	to be selected.
	Probabilities	Routing Options
	Join the Shortest Queue (JSQ)	No options available for
	Shortest Response Time	this routing strategy
	Least Utilization	
	Fastest Service	
	Load Dependent Routing	

- - Router node also allows to specify routing
 - Applies policy across multiple input queues
 - Same policies as routing section

Hands-on activity: load balancing

- We add two queues to the M/M/1 model.
- Goal: compare *round-robin* and *probabilistic* load-balancing

Blocking after service

🔠 Editing Server Properti	es		
Station Name			
Station Name: Server			
Server Parameters Definiton			
Queue Section $\$ Service Section $\$ Rou	iting Section \setminus		
Capacity	Queue Policy		
	Station queue policy: Non-pr	eemptive Scheduling	-
⊖ infinite	Class	Queue Policy	Drop Rule
	🕐 Class0	FCFS	BAS blocking
			Waiting Queue (no drop
station with fi	nite capacity		BAS blocking
			Глор
Inite	sel	ection of the	
	I	BAS policy	
			BAS policy:
max num.customers: 5 🗧 🕶		reques	sts are blocked in the
		sender	station when the max
	max number of request	ts capa	city of the receiver
	in the station		is reached

Activity 3: Parameter sweeping

Hands-on activity: bottleneck switch

- Analysis of bottleneck switch
- Measure: Number of Customers
- Demands: Queue 1: 10, 5; Queue 2: 5, 9

💹 Define What-if analysis parameters

What-if Analysis

Define the type of What-If analysis to be performed and modify parameter options.

WARNING:

Enabling What-If analysis will disable all statistical outputs.

Parameter selection for the control of repeated executions

Population mix -

Type of population mix

Initial B:	0
Final B:	1 🖨
Steps (n. o	11 🗘
Class:	Class1 •

Description

This type of analysis is available other open classes) and it applie

Repeat the simulation changing keeping constant the total num

What-If analysis

Perform repeated executions automatically

JMVA: What-If

Throughput

Response times

Activity 4: Capacity constraints

FCR definition

• Thread limits via *finite capacity regions* (FCRs)

S 🕢

🕙 🖞 💷 🔇 🔇 🗠 📳 🗶 🔾 🛽

÷

FCR parameters

- Capacity constraints: total, per-class, per-group
- Memory constraints: jobs have sizes and must fit

Editing FCRegion1 Prope Global Properties of FCRe	erties gion1
Region Name:	FCRegion1 Global job capacity
Region Capacity:	10 📮 🗆 Infinite
Region Memory Size:	Global memory capacity 15 📮 🗆 Infinite
Region Groups:	

Class Specific Group Specific	М	emory	Capacity	Jol	Job Size				
Class	Capacity	00	Memory Size	00	Drop	Weight	Size		
Class1	2		3		true 🔻	1	1		
O Class2	4		5		true 🔹	1	2		
O Class3	6		7		true 👻	1	1		

per class in the FCR

drop the requests when the region capacity is saturated

FCR groups and indices

• Group-specific constraints (*i.e.*, for subset of classes)

Specific Properties of FCRegion1								· ·	· ·	•
Class Specific Gro	up Specific							· ·	· ·	
Group	Capacity	œ	Memory Size	œ	Member Cl					Ì
Group1	∞	Ľ	∞	P	Edit	×				
									ŕ	
Editing Group1 Member Classes ×									Х	•
Select Member Classes										•
	Class Select									
(Class1									•
	Class2									

Dedicated performance indices

ine performance indices to	be collected and plotted	by the simulation engine.		Select an i	ndex
Performance Index	Class/Mode	Station/Region	Stat.Res.	Conf.Int.	Max Rel.Err.
Number of Customers	All Classes 🔻	EFCRegion1		0.99	0.0
Response Time	All Classes 👻	FCRegion1		0.99	0.0
FCR Total Weight	All Classes 👻	I FCRegion1		0.99	0.0
FCR Memory Occupation	All Classes 👻	FCRegion1		0.99	0.0

Support for PN elements

Places and transitions

Queueing Petri nets

PN sections & modes

- JMT design paradigm extends to PN elements
- Mode: a rule to activate and fire a transition

Hand-on activity: FCRs vs QPNs

- Arrival rate: λ=0.99 job/s
- Service rate: μ=1.00 job/s
- Goal: restrict max 1 job inside queue

s	<u> </u>		→O]	· · · · · · · · · · · · · · · · · · ·
Source 2 Arrived	Transition 1	Queue 2	Completed Transition 2	Sink 2
				·····
	· · · · · · · · · · · · · · · ·			AccessTokens
	· · <mark>· · · · · · · · · · · · · · · · · </mark>	· · · · · · · ·	· · · · · · · · · · · · · · · ·	· · · · · · · · · · ·
			· · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·			
Source 1. Queue 1	Sink 1			· · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·				

Activity 5: Workflows & fork-join

Class-switching

- A job can change its class during the simulation
 - Workflows, re-entrant lines, track path-wise perf., ...

tion Nam	e		
ion Name	ClassSwitch 1		
Class Switcl	n Matrix \ Routing Section \ es		
Class Switch S Strategi *	n Matrix \ Routing Section \ es Class0	Class1	
Class Switch S Strategi * Class0	es Class0 0.6 (60%)	Class1 0.4 (40%)	

Fork-Join elements

- Jobs split into tasks carrying id of the parent job
- Support for:
 - nested fork-joins
 - multiple join points
- finite capacity between fork-join
- advanced policies (e.g., quorum)

Advanced fork

- Branch prob.: randomize no. tasks and output links
- Random subset: choose n-out-of-k output links
- Class Switch: assign new class to forked tasks

	K)			· · ·			Jujeu	e1			• • • •	- - - -	• →(i K) 1	· ·
		-															
			•						2	1	·				•	•	• •
			Ŀ			≻					_						
									×-	/							
							_Q)ueu	ie _. 2								
																	•
1	1		1	1			1	1	1		1			1		1	
															•	•	
	1																
1	1	1	1	1			1		1		1	1			1	1	•
	1	1	1												•	•	• •
	÷.,															•	
	1.1											1					

Editing Fork 1 Properties			×
Station Name: Fork 1			
Fork 1 Parameters Definiton			
Queue Section Capacity Sect	tion Fork Strategies \		
Enable Advanced Fork Strate	gies		
Standard Fork Strategy			
Number of tasks to be gener	rated on each output link for each input	job (customer) to the	Fork: 1
Advanced Fork Strategies		Branch Probabilitie	25
Class	Fork Strategy	Destination	Probability
Q Class1	Branch Probabilities 🔷 👻	Queue 1	0.8
		Queue 2	0.6
		Task Distribution	
		Number of Tasks	Probability
Description		3	0.5
Each output link has a probabi	lity p of generating tasks. When a		
output link is selected, the nun	nber of tasks to generate is described		
by a custom distribution (one t	for each output link).	Add	Delete
		·]

Advanced join

- Quorum: wait a subset of tasks (of the same job)
- Guard: like quorum but requires given class mix
- Scaler: join then fork again

	🚼 Editing Join 1 Properties	
	Station Name	
	Station Name: Join 1	
Fork1	1	
Queue1	Join 1 Parameters Definiton	
	Join Strategies Routing Section	
· · · · · · · · · · · · · · · · · · ·	Join Strategies	Description
	Class Join Strategy	Fires when a subset of tasks forked
	O Class1	from the same job arrive at the join.
	e close	Pending tasks are discarded upon
		arrivai.
Queue 3 Join 1		Join Options
		Number of Required Tasks: 2
· · · · · · · · · · · · · · · · · · ·		
		, p
	Done	
· · · · · · · · · · · · · · · · · · ·		

Semaphore

- Block first N tasks forked from the same job
- Upon arrival of the Nth, unblock and let the other pass

		💹 Editing Semaphore 1 Proper	ties	_
	· [Station Name		
	· • •	Station Name: Semaphore 1		
	· L			
Fork 1 · · · · Queue 1 · · · · · · ·	· •	Semaphore 1 Parameters De	finiton	
<u> </u>	· •	Semaphore Strategies Rout	ing Section \	
	· •	⊂ Semaphore Strategies		Description
	·	Class	Semaphore Strategy	Holds until a subset of tasks forked from
· · · · · · · · · · · · · · · · · · ·	· •			the same job arrive at the semaphore.
	·		Standard Semaphore	Pending tasks pass through upon arrival
	· •			
<u> </u>	· •			
	· •			
Semaphore 1				- Semanhore Ontions
Queue S			(Semaphore Options
				Number of Required Tasks: 2
Oueue 4	. 11			
	· 1			
	· .			
	· •			
	· ·		Done	
	. 🖵			

-23

Case Study: YARN Capacity Scheduler

• YARN — Yet Another Resource Negotiator

Case Study: YARN Capacity Scheduler

- Detailed model using QPN
 - Nested FCRs (JobQueue, MapQueue, RedQueue)
 - 14.13% error in trace-driven simulation [D. Ardagna et al., ICA3PP'16]

Case Study: YARN Capacity Scheduler

- Simplified model using QN
 - Class switching between Map tasks and Reduce tasks

Conclusion

Coming Soon (>= version 1.0.3)

- Customer impatience
- Ability to parallelize JMT on multiple cores
 - Collect samples or run what-ifs in parallel
 - Internal simulation remains single-threaded
- New load-balancing policies
 - Power of k choices
 - SITA
 - ...

TreeMVA in JMVA for sparse networks

Tutorial supported by the European Union's Horizon 2020 research and innovation programme under grant agreement No. 644869. ⁶⁰